Ocean
Loading...
Searching...
No Matches
Frustum.h
Go to the documentation of this file.
1/*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 *
4 * This source code is licensed under the MIT license found in the
5 * LICENSE file in the root directory of this source tree.
6 */
7
8#ifndef META_OCEAN_MATH_FRUSTUM_H
9#define META_OCEAN_MATH_FRUSTUM_H
10
11#include "ocean/math/Math.h"
13#include "ocean/math/Box3.h"
14#include "ocean/math/Numeric.h"
16#include "ocean/math/Plane3.h"
17#include "ocean/math/Sphere3.h"
18
19namespace Ocean
20{
21
22// Forward declaration.
23template <typename T> class FrustumT;
24
25/**
26 * Definition of a frustum.
27 * @see FrustumT
28 * @ingroup math
29 */
31
32/**
33 * Definition of a frustum with double values.
34 * @see FrustumT
35 * @ingroup math
36 */
38
39/**
40 * Definition of a frustum vector with float values.
41 * @see FrustumT
42 * @ingroup math
43 */
45
46/**
47 * Definition of a typename alias for vectors with FrustumT objects.
48 * @see FrustumT
49 * @ingroup math
50 */
51template <typename T>
52using FrustumsT = std::vector<FrustumT<T>>;
53
54/**
55 * Definition of a vector holding Frustum objects.
56 * @see Frustum
57 * @ingroup math
58 */
59typedef std::vector<Frustum> Frustums;
60
61/**
62 * Definition of a vector holding FrustumD objects.
63 * @see FrustumD
64 * @ingroup math
65 */
66typedef std::vector<FrustumD> FrustumsD;
67
68/**
69 * Definition of a vector holding FrustumF objects.
70 * @see FrustumF
71 * @ingroup math
72 */
73typedef std::vector<FrustumF> FrustumsF;
74
75/**
76 * This class implements a viewing frustum.
77 * The viewing frustum points towards the negative z-space with x-axis pointing towards the right plane of the frustum, and y-axis pointing towards the top plane of the frustum.
78 * @tparam T Data type of the frustum elements.
79 * @see Frustum.
80 * @ingroup math
81 */
82template <typename T>
84{
85 public:
86
87 /**
88 * Definition of ids for the individual planes of the frustum.
89 */
90 enum PlaneIds : unsigned int
91 {
92 /// The front plane, with normal pointing into the frustum.
94 /// The back plane, with normal pointing into the frustum.
95 PI_BACK = 1u,
96 /// The left plane, with normal pointing into the frustum.
97 PI_LEFT = 2u,
98 /// The right plane, with normal pointing into the frustum.
100 /// The top plane, with normal pointing into the frustum.
101 PI_TOP = 4u,
102 /// The bottom plane, with normal pointing into the frustum.
104 /// The number of planes.
105 PI_END = 6u
106 };
107
108 public:
109
110 /**
111 * Definition of the used data type.
112 */
113 typedef T Type;
114
115 public:
116
117 /**
118 * Default constructor creating an invalid frustum.
119 */
120 FrustumT() = default;
121
122 /**
123 * Creates a new viewing frustum, pointing towards the negative z-space with y-axis up.
124 * @param width The width of the camera image, in pixel, with range (0, infinity)
125 * @param height The height of the camera image, in pixel, with range (0, infinity)
126 * @param focalLengthX The focal length of the camera in horizontal direction, in pixel domain, with range (0, infinity)
127 * @param focalLengthY The focal length of the camera in vertical direction, in pixel domain, with range (0, infinity)
128 * @param principalPointX The horizontal location of the camera's principal point, in pixel, with range (0, width)
129 * @param principalPointY The vertical location of the camera's principal point, in pixel, with range (0, height)
130 * @param nearDistance The distance to the frustum's front plane, with range [0, infinity)
131 * @param farDistance The distance to the frustum's back plane, with range (nearDistance, infinity)
132 */
133 FrustumT(const T width, const T height, const T focalLengthX, const T focalLengthY, const T principalPointX, const T principalPointY, const T nearDistance, const T farDistance);
134
135 /**
136 * Creates a new viewing frustum from a camera, pointing towards the negative z-space with y-axis up.
137 * @param pinholeCamera The pinhole camera profile for which the frustum will be created, must be valid
138 * @param nearDistance The distance to the frustum's front plane, with range [0, infinity)
139 * @param farDistance The distance to the frustum's back plane, with range (nearDistance, infinity)
140 */
141 inline FrustumT(const PinholeCamera& pinholeCamera, const T nearDistance, const T farDistance);
142
143 /**
144 * Creates a new viewing frustum from a camera, pointing towards the negative z-space with y-axis up.
145 * @param pinholeCamera The pinhole camera profile for which the frustum will be created, must be a pinhole camera, must be valid
146 * @param nearDistance The distance to the frustum's front plane, with range [0, infinity)
147 * @param farDistance The distance to the frustum's back plane, with range (nearDistance, infinity)
148 */
149 inline FrustumT(const AnyCameraT<T>& pinholeCamera, const T nearDistance, const T farDistance);
150
151 /**
152 * Creates a new viewing frustum located anywhere in space.
153 * @param world_T_camera The transformation transforming the camera (pointing towards negative z-space with y-axis up) to world, must be valid
154 * @param width The width of the camera image, in pixel, with range (0, infinity)
155 * @param height The height of the camera image, in pixel, with range (0, infinity)
156 * @param focalLengthX The focal length of the camera in horizontal direction, in pixel domain, with range (0, infinity)
157 * @param focalLengthY The focal length of the camera in vertical direction, in pixel domain, with range (0, infinity)
158 * @param principalPointX The horizontal location of the camera's principal point, in pixel, with range (0, width)
159 * @param principalPointY The vertical location of the camera's principal point, in pixel, with range (0, height)
160 * @param nearDistance The distance to the frustum's front plane, with range [0, infinity)
161 * @param farDistance The distance to the frustum's back plane, with range (nearDistance, infinity)
162 */
163 FrustumT(const HomogenousMatrixT4<T>& world_T_camera, const T width, const T height, const T focalLengthX, const T focalLengthY, const T principalPointX, const T principalPointY, const T nearDistance, const T farDistance);
164
165 /**
166 * Creates a new viewing frustum from a camera located anywhere in space.
167 * @param world_T_camera The transformation transforming the camera (pointing towards negative z-space with y-axis up) to world, must be valid
168 * @param pinholeCamera The pinhole camera profile for which the frustum will be created, must be valid
169 * @param nearDistance The distance to the frustum's front plane, with range [0, infinity)
170 * @param farDistance The distance to the frustum's back plane, with range (nearDistance, infinity)
171 */
172 inline FrustumT(const HomogenousMatrixT4<T>& world_T_camera, const PinholeCamera& pinholeCamera, const T nearDistance, const T farDistance);
173
174 /**
175 * Creates a new viewing frustum from a camera located anywhere in space.
176 * @param world_T_camera The transformation transforming the camera (pointing towards negative z-space with y-axis up) to world, must be valid
177 * @param pinholeCamera The pinhole camera profile for which the frustum will be created, must be a pinhole camera, must be valid
178 * @param nearDistance The distance to the frustum's front plane, with range [0, infinity)
179 * @param farDistance The distance to the frustum's back plane, with range (nearDistance, infinity)
180 */
181 inline FrustumT(const HomogenousMatrixT4<T>& world_T_camera, const AnyCamera& pinholeCamera, const T nearDistance, const T farDistance);
182
183 /**
184 * Returns the six planes of the frustum, with order as defined in PlaneIds.
185 * @return The frustum's planes
186 */
187 inline const PlaneT3<T>* planes() const;
188
189 /**
190 * Returns whether a 3D object point is inside this frustum.
191 * @param objectPoint The 3D object point to check
192 * @return True, if so
193 */
194 bool isInside(const VectorT3<T>& objectPoint) const;
195
196 /**
197 * Returns whether a 3D sphere is located entirely inside this frustum.
198 * @param sphere The sphere to check, must be valid
199 * @return True, if so
200 */
201 bool isInside(const SphereT3<T>& sphere) const;
202
203 /**
204 * Returns whether a 3D box is located entirely inside this frustum.
205 * @param box The box to check, must be valid
206 * @return True, if so
207 */
208 bool isInside(const Box3& box) const;
209
210 /**
211 * Returns whether a 3D object is located entirely inside this frustum.
212 * @param vertices The 3D vertices of the object to check, must be valid
213 * @param size The number of vertices, with range [1, infinity)
214 * @return True, if so
215 */
216 bool isInside(const Vector3* vertices, const size_t size) const;
217
218 /**
219 * Returns whether a 3D sphere has an interaction with this frustum or is entirely inside this frustum.
220 * @param sphere The sphere to check, must be valid
221 * @return True, if so
222 */
223 bool hasIntersection(const SphereT3<T>& sphere) const;
224
225 /**
226 * Returns whether a 3D box has an interaction with this frustum or is entirely inside this frustum.
227 * @param box The box to check, must be valid
228 * @return True, if so
229 */
230 bool hasIntersection(const Box3& box) const;
231
232 /**
233 * Returns whether a 3D object has an interaction with this frustum or is entirely inside this frustum.
234 * @param vertices The 3D vertices of the object to check, must be valid
235 * @param size The number of vertices, with range [1, infinity)
236 * @return True, if so
237 */
238 bool hasIntersection(const Vector3* vertices, const size_t size) const;
239
240 /**
241 * Returns whether this frustum object is valid.
242 */
243 inline bool isValid() const;
244
245 /**
246 * Returns whether two frustum objects are equal up to a small epsilon.
247 * @param frustum The second frustum to check
248 * @param eps The epsilon to be used, with range [0, infinity)
249 * @return True, if so
250 */
251 bool isEqual(const FrustumT<T>& frustum, const T eps = NumericT<T>::eps()) const;
252
253 /**
254 * Returns whether two frustum objects are identical.
255 * @param frustum The second frustum to check
256 * @return True, if so
257 */
258 inline bool operator==(const FrustumT<T>& frustum) const;
259
260 /**
261 * Returns whether two frustum objects are not identical.
262 * @param frustum The second frustum to check
263 * @return True, if so
264 */
265 inline bool operator!=(const FrustumT<T>& frustum) const;
266
267 protected:
268
269 /// The six planes of the frustum.
271};
272
273template <typename T>
274FrustumT<T>::FrustumT(const T width, const T height, const T focalLengthX, const T focalLengthY, const T principalPointX, const T principalPointY, const T nearDistance, const T farDistance)
275{
276 ocean_assert(width > NumericT<T>::eps() && height > NumericT<T>::eps());
277
278 ocean_assert(focalLengthX > NumericT<T>::eps() && focalLengthY > NumericT<T>::eps());
279
280 ocean_assert(principalPointX > 0 && principalPointX < width);
281 ocean_assert(principalPointY > 0 && principalPointY < height);
282
283 ocean_assert(nearDistance >= 0 && nearDistance < farDistance);
284
285 planes_[PI_FRONT] = PlaneT3<T>(VectorT3<T>(0, 0, -1), nearDistance);
286 planes_[PI_BACK] = PlaneT3<T>(VectorT3<T>(0, 0, 1), -farDistance);
287
288 const T& leftPx = principalPointX;
289 const T rightPx = width - principalPointX;
290
291 planes_[PI_LEFT] = PlaneT3<T>(VectorT3<T>(focalLengthX, 0, -leftPx).normalized(), 0);
292 planes_[PI_RIGHT] = PlaneT3<T>(VectorT3<T>(-focalLengthX, 0, -rightPx).normalized(), 0);
293
294 const T& topPy = principalPointY;
295 const T bottomPy = height - principalPointY;
296
297 planes_[PI_TOP] = PlaneT3<T>(VectorT3<T>(0, -focalLengthY, -topPy).normalized(), 0);
298 planes_[PI_BOTTOM] = PlaneT3<T>(VectorT3<T>(0, focalLengthY, -bottomPy).normalized(), 0);
299
300 ocean_assert(isValid());
301}
302
303template <typename T>
304inline FrustumT<T>::FrustumT(const PinholeCamera& pinholeCamera, const T nearDistance, const T farDistance) :
305 FrustumT<T>(T(pinholeCamera.width()), T(pinholeCamera.height()), T(pinholeCamera.focalLengthX()), T(pinholeCamera.focalLengthY()), T(pinholeCamera.principalPointX()), T(pinholeCamera.principalPointY()), nearDistance, farDistance)
306{
307 ocean_assert(pinholeCamera.isValid());
308}
309
310template <typename T>
311inline FrustumT<T>::FrustumT(const AnyCameraT<T>& pinholeCamera, const T nearDistance, const T farDistance) :
312 FrustumT<T>(T(pinholeCamera.width()), T(pinholeCamera.height()), T(pinholeCamera.focalLengthX()), T(pinholeCamera.focalLengthY()), T(pinholeCamera.principalPointX()), T(pinholeCamera.principalPointY()), nearDistance, farDistance)
313{
314 ocean_assert(pinholeCamera.isValid());
315 ocean_assert(pinholeCamera.anyCameraType() == AnyCameraType::PINHOLE);
316}
317
318template <typename T>
319FrustumT<T>::FrustumT(const HomogenousMatrixT4<T>& world_T_camera, const T width, const T height, const T focalLengthX, const T focalLengthY, const T principalPointX, const T principalPointY, const T nearDistance, const T farDistance)
320{
321 ocean_assert(world_T_camera.isValid() && world_T_camera.rotationMatrix().isOrthonormal(NumericT<T>::weakEps()));
322
323 ocean_assert(width > NumericT<T>::eps() && height > NumericT<T>::eps());
324
325 ocean_assert(focalLengthX > NumericT<T>::eps() && focalLengthY > NumericT<T>::eps());
326
327 ocean_assert(principalPointX > 0 && principalPointX < width);
328 ocean_assert(principalPointY > 0 && principalPointY < height);
329
330 ocean_assert(nearDistance >= 0 && nearDistance < farDistance);
331
332 const VectorT3<T> translation = world_T_camera.translation();
333
334 const VectorT3<T> zAxisNormalized = world_T_camera.zAxis().normalizedOrZero();
335
336 planes_[PI_FRONT] = PlaneT3<T>(world_T_camera * VectorT3<T>(0, 0, -nearDistance), -zAxisNormalized);
337 planes_[PI_BACK] = PlaneT3<T>(world_T_camera * VectorT3<T>(0, 0, -farDistance), zAxisNormalized);
338
339 const T& leftPx = principalPointX;
340 const T rightPx = width - principalPointX;
341
342 const VectorT3<T> leftNormal = (world_T_camera * VectorT3<T>(focalLengthX, 0, -leftPx) - translation).normalizedOrZero();
343 const VectorT3<T> rightNormal = (world_T_camera * VectorT3<T>(-focalLengthX, 0, -rightPx) - translation).normalizedOrZero();
344
345 planes_[PI_LEFT] = PlaneT3<T>(translation, leftNormal);
346 planes_[PI_RIGHT] = PlaneT3<T>(translation, rightNormal);
347
348 const T& topPy = principalPointY;
349 const T bottomPy = height - principalPointY;
350
351 const VectorT3<T> topNormal = (world_T_camera * VectorT3<T>(0, -focalLengthY, -topPy) - translation).normalizedOrZero();
352 const VectorT3<T> bottomNormal = (world_T_camera * VectorT3<T>(0, focalLengthY, -bottomPy) - translation).normalizedOrZero();
353
354 planes_[PI_TOP] = PlaneT3<T>(translation, topNormal);
355 planes_[PI_BOTTOM] = PlaneT3<T>(translation, bottomNormal);
356
357 ocean_assert(isValid());
358}
359
360template <typename T>
361FrustumT<T>::FrustumT(const HomogenousMatrixT4<T>& world_T_camera, const PinholeCamera& pinholeCamera, const T nearDistance, const T farDistance) :
362 FrustumT(world_T_camera, T(pinholeCamera.width()), T(pinholeCamera.height()), T(pinholeCamera.focalLengthX()), T(pinholeCamera.focalLengthY()), T(pinholeCamera.principalPointX()), T(pinholeCamera.principalPointY()), nearDistance, farDistance)
363{
364 ocean_assert(pinholeCamera.isValid());
365}
366
367template <typename T>
368FrustumT<T>::FrustumT(const HomogenousMatrixT4<T>& world_T_camera, const AnyCamera& pinholeCamera, const T nearDistance, const T farDistance) :
369 FrustumT(world_T_camera, T(pinholeCamera.width()), T(pinholeCamera.height()), T(pinholeCamera.focalLengthX()), T(pinholeCamera.focalLengthY()), T(pinholeCamera.principalPointX()), T(pinholeCamera.principalPointY()), nearDistance, farDistance)
370{
371 ocean_assert(pinholeCamera.isValid());
372 ocean_assert(pinholeCamera.anyCameraType() == AnyCameraType::PINHOLE);
373}
374
375template <typename T>
376inline const PlaneT3<T>* FrustumT<T>::planes() const
377{
378 return planes_;
379}
380
381template <typename T>
382inline bool FrustumT<T>::isInside(const VectorT3<T>& objectPoint) const
383{
384 ocean_assert(isValid());
385
386 // the point is inside the frustum if the point is in front of all frustum planes
387
388 for (unsigned int n = 0u; n < PI_END; ++n)
389 {
390 if (planes_[n].signedDistance(objectPoint) < T(0))
391 {
392 return false;
393 }
394 }
395
396 return true;
397}
398
399template <typename T>
400bool FrustumT<T>::isInside(const SphereT3<T>& sphere) const
401{
402 ocean_assert(isValid());
403 ocean_assert(sphere.isValid());
404
405 // the sphere is entirely inside the frustum if the signed distance is bigger/equal than the radius of the sphere for all planes
406
407 for (unsigned int n = 0u; n < PI_END; ++n)
408 {
409 if (planes_[n].signedDistance(sphere.center()) < sphere.radius())
410 {
411 return false;
412 }
413 }
414
415 return true;
416}
417
418template <typename T>
419bool FrustumT<T>::isInside(const Box3& box) const
420{
421 ocean_assert(isValid());
422 ocean_assert(box.isValid());
423
424 // the box is entirely inside of the frustum if all 8 corners of the box are in front of all planes
425
426 for (unsigned int n = 0u; n < PI_END; ++n)
427 {
428 const PlaneT3<T>& plane = planes_[n];
429
430 if (plane.signedDistance(box.lower()) < T(0)
431 || plane.signedDistance(VectorT3<T>(box.lower().x(), box.lower().y(), box.higher().z())) < T(0)
432 || plane.signedDistance(VectorT3<T>(box.lower().x(), box.higher().y(), box.lower().z())) < T(0)
433 || plane.signedDistance(VectorT3<T>(box.lower().x(), box.higher().y(), box.higher().z())) < T(0)
434 || plane.signedDistance(VectorT3<T>(box.higher().x(), box.lower().y(), box.lower().z())) < T(0)
435 || plane.signedDistance(VectorT3<T>(box.higher().x(), box.lower().y(), box.higher().z())) < T(0)
436 || plane.signedDistance(VectorT3<T>(box.higher().x(), box.higher().y(), box.lower().z())) < T(0)
437 || plane.signedDistance(box.higher()) < T(0))
438 {
439 return false;
440 }
441 }
442
443 return true;
444}
445
446template <typename T>
447bool FrustumT<T>::isInside(const Vector3* vertices, const size_t size) const
448{
449 ocean_assert(isValid());
450 ocean_assert(vertices != nullptr && size != 0);
451
452 // the object is entirely inside of the frustum if all vertices of the object are in front of all planes
453
454 for (unsigned int n = 0u; n < PI_END; ++n)
455 {
456 const PlaneT3<T>& plane = planes_[n];
457
458 for (size_t nVertex = 0; nVertex < size; ++nVertex)
459 {
460 if (plane.signedDistance(vertices[nVertex]) < T(0))
461 {
462 return false;
463 }
464 }
465 }
466
467 return true;
468}
469
470template <typename T>
472{
473 ocean_assert(isValid());
474 ocean_assert(sphere.isValid());
475
476 // the sphere is partially inside the frustum if the signed distance is bigger than the (negative) radius of the sphere for all planes
477
478 for (unsigned int n = 0u; n < PI_END; ++n)
479 {
480 if (planes_[n].signedDistance(sphere.center()) < -sphere.radius())
481 {
482 return false;
483 }
484 }
485
486 return true;
487}
488
489template <typename T>
490bool FrustumT<T>::hasIntersection(const Box3& box) const
491{
492 ocean_assert(isValid());
493 ocean_assert(box.isValid());
494
495 // the box is outside of the frustum if all 8 corners of the box are outside of one plane
496
497 for (unsigned int n = 0u; n < PI_END; ++n)
498 {
499 const PlaneT3<T>& plane = planes_[n];
500
501 if (plane.signedDistance(box.lower()) < T(0)
502 && plane.signedDistance(VectorT3<T>(box.lower().x(), box.lower().y(), box.higher().z())) < T(0)
503 && plane.signedDistance(VectorT3<T>(box.lower().x(), box.higher().y(), box.lower().z())) < T(0)
504 && plane.signedDistance(VectorT3<T>(box.lower().x(), box.higher().y(), box.higher().z())) < T(0)
505 && plane.signedDistance(VectorT3<T>(box.higher().x(), box.lower().y(), box.lower().z())) < T(0)
506 && plane.signedDistance(VectorT3<T>(box.higher().x(), box.lower().y(), box.higher().z())) < T(0)
507 && plane.signedDistance(VectorT3<T>(box.higher().x(), box.higher().y(), box.lower().z())) < T(0)
508 && plane.signedDistance(box.higher()) < T(0))
509 {
510 return false;
511 }
512 }
513
514 return true;
515}
516
517template <typename T>
518bool FrustumT<T>::hasIntersection(const Vector3* vertices, const size_t size) const
519{
520 ocean_assert(isValid());
521 ocean_assert(vertices != nullptr && size != 0);
522
523 // the object is outside of the frustum if all vertices of the object are outside of at least one plane
524
525 for (unsigned int n = 0u; n < PI_END; ++n)
526 {
527 const PlaneT3<T>& plane = planes_[n];
528
529 bool allOutside = true;
530
531 for (size_t nVertex = 0; allOutside && nVertex < size; ++nVertex)
532 {
533 allOutside = plane.signedDistance(vertices[nVertex]) < T(0);
534 }
535
536 if (allOutside)
537 {
538 return false;
539 }
540 }
541
542 return true;
543}
544
545template <typename T>
546inline bool FrustumT<T>::isValid() const
547{
548 return planes_[PI_FRONT].isValid();
549}
550
551template <typename T>
552bool FrustumT<T>::isEqual(const FrustumT<T>& frustum, const T eps) const
553{
554 for (unsigned int n = 0u; n < PI_END; ++n)
555 {
556 if (!planes_[n].isEqual(frustum.planes_[n], eps))
557 {
558 return false;
559 }
560 }
561
562 return true;
563}
564
565template <typename T>
566inline bool FrustumT<T>::operator==(const FrustumT<T>& frustum) const
567{
568 return isEqual(frustum);
569}
570
571template <typename T>
572inline bool FrustumT<T>::operator!=(const FrustumT<T>& frustum) const
573{
574 return !isEqual(frustum);
575}
576
577}
578
579#endif // META_OCEAN_MATH_FRUSTUM_H
This class implements the abstract base class for all AnyCamera objects.
Definition AnyCamera.h:130
virtual bool isValid() const =0
Returns whether this camera is valid.
virtual AnyCameraType anyCameraType() const =0
Returns the type of this camera.
bool isValid() const
Returns whether the bounding box is valid.
const VectorT3< T > & higher() const
Returns the higher corner of the box.
const VectorT3< T > & lower() const
Returns the lower corner of the box.
This class implements a viewing frustum.
Definition Frustum.h:84
const PlaneT3< T > * planes() const
Returns the six planes of the frustum, with order as defined in PlaneIds.
Definition Frustum.h:376
bool isValid() const
Returns whether this frustum object is valid.
Definition Frustum.h:546
PlaneT3< T > planes_[PI_END]
The six planes of the frustum.
Definition Frustum.h:270
bool isEqual(const FrustumT< T > &frustum, const T eps=NumericT< T >::eps()) const
Returns whether two frustum objects are equal up to a small epsilon.
Definition Frustum.h:552
bool operator!=(const FrustumT< T > &frustum) const
Returns whether two frustum objects are not identical.
Definition Frustum.h:572
bool operator==(const FrustumT< T > &frustum) const
Returns whether two frustum objects are identical.
Definition Frustum.h:566
T Type
Definition of the used data type.
Definition Frustum.h:113
FrustumT()=default
Default constructor creating an invalid frustum.
bool isInside(const VectorT3< T > &objectPoint) const
Returns whether a 3D object point is inside this frustum.
Definition Frustum.h:382
PlaneIds
Definition of ids for the individual planes of the frustum.
Definition Frustum.h:91
@ PI_END
The number of planes.
Definition Frustum.h:105
@ PI_FRONT
The front plane, with normal pointing into the frustum.
Definition Frustum.h:93
@ PI_BOTTOM
The bottom plane, with normal pointing into the frustum.
Definition Frustum.h:103
@ PI_LEFT
The left plane, with normal pointing into the frustum.
Definition Frustum.h:97
@ PI_RIGHT
The right plane, with normal pointing into the frustum.
Definition Frustum.h:99
@ PI_TOP
The top plane, with normal pointing into the frustum.
Definition Frustum.h:101
@ PI_BACK
The back plane, with normal pointing into the frustum.
Definition Frustum.h:95
bool hasIntersection(const SphereT3< T > &sphere) const
Returns whether a 3D sphere has an interaction with this frustum or is entirely inside this frustum.
Definition Frustum.h:471
This class implements a 4x4 homogeneous transformation matrix using floating point values with the pr...
Definition HomogenousMatrix4.h:110
SquareMatrixT3< T > rotationMatrix() const
Returns the rotation matrix of the transformation.
Definition HomogenousMatrix4.h:1493
VectorT3< T > translation() const
Returns the translation of the transformation.
Definition HomogenousMatrix4.h:1381
bool isValid() const
Returns whether this matrix is a valid homogeneous transformation.
Definition HomogenousMatrix4.h:1806
VectorT3< T > zAxis() const
Returns the z-axis of the transformation which is the first vector of the upper left 3x3 rotation mat...
Definition HomogenousMatrix4.h:1374
This class provides basic numeric functionalities.
Definition Numeric.h:57
bool isValid() const
Returns whether this camera is valid.
Definition PinholeCamera.h:1572
This class implements a plane in 3D space.
Definition Plane3.h:73
T signedDistance(const VectorT3< T > &point) const
Returns the distance between a given point and this plane.
Definition Plane3.h:441
This class implements a 3D sphere.
Definition Sphere3.h:57
bool isValid() const
Returns whether this radius of this sphere is not negative and thus the sphere is valid.
Definition Sphere3.h:281
const T & radius() const
Returns the radius of the sphere.
Definition Sphere3.h:209
const VectorT3< T > & center() const
Returns the center of the sphere.
Definition Sphere3.h:203
This class implements a vector with three elements.
Definition Vector3.h:97
const T & y() const noexcept
Returns the y value.
Definition Vector3.h:824
const T & x() const noexcept
Returns the x value.
Definition Vector3.h:812
const T & z() const noexcept
Returns the z value.
Definition Vector3.h:836
std::vector< FrustumD > FrustumsD
Definition of a vector holding FrustumD objects.
Definition Frustum.h:66
FrustumT< float > FrustumF
Definition of a frustum vector with float values.
Definition Frustum.h:44
FrustumT< double > FrustumD
Definition of a frustum with double values.
Definition Frustum.h:37
std::vector< FrustumF > FrustumsF
Definition of a vector holding FrustumF objects.
Definition Frustum.h:73
std::vector< Frustum > Frustums
Definition of a vector holding Frustum objects.
Definition Frustum.h:59
FrustumT< Scalar > Frustum
Definition of a frustum.
Definition Frustum.h:30
std::vector< FrustumT< T > > FrustumsT
Definition of a typename alias for vectors with FrustumT objects.
Definition Frustum.h:52
@ PINHOLE
A pinhole camera.
The namespace covering the entire Ocean framework.
Definition Accessor.h:15