kats.models.stlf module¶
STLF forecasting model
This model starts from decomposing the time series data with STL decomposition then it fits individual foreasting model on the de-seasonalized components it re-seasonalizes the forecasted results with seasonal data to produce the final forecasting results.
- class kats.models.stlf.STLFModel(data: kats.consts.TimeSeriesData, params: kats.models.stlf.STLFParams)[source]¶
Bases:
Generic
[kats.models.model.ParamsType
]Model class for STLF
This class provides fit, predict, and plot methods for STLF model
- data¶
the input time series data as
kats.consts.TimeSeriesData
- params¶
the parameter class defined with STLFParams
- deseasonalize() → kats.consts.TimeSeriesData[source]¶
De-seasonalize the time series data
- Parameters
None –
- Returns
The seasonal and de-seasonalized data
- fit(**kwargs) → None[source]¶
Fit STLF model
- Parameters
None –
- Returns
The fitted STLF model object
- static get_parameter_search_space() → List[Dict[str, object]][source]¶
Provide a parameter space for STLF model
Move the implementation of get_parameter_search_space() out of stlf to keep HPT implementation tighter, and avoid the dependency conflict issue.
- Parameters
None –
- Returns
List of dicts contains parameter search space
- predict(steps: int, include_history=False, **kwargs) → pandas.core.frame.DataFrame[source]¶
predict with the fitted STLF model
- Parameters
steps – the steps or length of prediction horizon
include_history – if include the historical data, default as False
- Returns
time, fcst, fcst_lower, and fcst_upper
- Return type
The predicted dataframe with following columns
- class kats.models.stlf.STLFParams(method: str, m: int)[source]¶
Bases:
kats.consts.Params
Parameter class for Prophet model
This is the parameter class for STLF model, stands for STL-decomposition based forecasting model.
- method¶
str, the forecasting model to fit on the de-seasonalized component it currently supports prophet, linear, quadratic, and theta method.
- m¶
int, the length of one seasonal cycle