kats.models.bayesian_var module¶
Bayesian estimation of Vector Autoregressive Model using Minnesota prior on the coefficient matrix. This version is useful for regularization when they are too many coefficients to be estimated.
- Implementation inspired by the following two articles/papers:
https://www.mathworks.com/help/econ/normalbvarm.html#mw_4a1ab118-9ef3-4380-8c5a-12b848254117 http://apps.eui.eu/Personal/Canova/Articles/ch10.pdf (page 5)
- class kats.models.bayesian_var.BayesianVAR(data: kats.consts.TimeSeriesData, params: kats.models.bayesian_var.BayesianVARParams)[source]¶
Bases:
Generic
[kats.models.model.ParamsType
]Model class for bayesian VAR
This class provides fit, predict, and plot methods for bayesian VAR model
- data¶
the input time series data as TimeSeriesData
- params¶
the parameter class defined with BayesianVARParams
- predict(steps: int, include_history=False, verbose=False) → Dict[str, kats.consts.TimeSeriesData][source]¶
Predict with the fitted VAR model
- Parameters
steps – Number of time steps to forecast
include_history – return fitted values also
- Returns
Disctionary of predicted results for each metric. Each metric result has following columns: time, fcst, fcst_lower, and fcst_upper Note confidence intervals of forecast are not yet implemented.
- class kats.models.bayesian_var.BayesianVARParams(p: int = 5, phi_0: float = 0.02, phi_1: float = 0.25, phi_2: float = 20, phi_3: float = 3)[source]¶
Bases:
kats.consts.Params
Parameter class for Bayesian VAR model
- Below parameters are hyperparameters in the covariance matrix for coefficient prior.
- See page 5 in http
//apps.eui.eu/Personal/Canova/Articles/ch10.pdf for more details.