kats.models.linear_model module¶
- class kats.models.linear_model.LinearModel(data: kats.consts.TimeSeriesData, params: kats.models.linear_model.LinearModelParams)[source]¶
Bases:
Generic
[kats.models.model.ParamsType
]Model class for Linear Model.
This class provides the fit, predict and plot methods for the Linear Model
- data¶
kats.consts.TimeSeriesData
, the input time series data as TimeSeriesData
- params¶
the parameter class defined with LinearModelParams
- static get_parameter_search_space() → List[Dict[str, object]][source]¶
get default parameter search space for Linear model.
- predict(steps, include_history=False, **kwargs)[source]¶
predict with fitted linear model.
- Parameters
steps – the steps or length of the prediction horizon
include_history – whether to include the historical data in the prediction
- Returns
time, fcst, fcst_lower, and fcst_upper
- Return type
The predicted dataframe with the following columns
- class kats.models.linear_model.LinearModelParams(alpha=0.05, **kwargs)[source]¶
Bases:
kats.consts.Params
Parameter class for Linear model.
This is the parameter class for the linear model.
- alpha¶
The alpha level for the confidence interval. The default alpha = 0.05 returns a 95% confidence interval