kats.models.quadratic_model module¶
- class kats.models.quadratic_model.QuadraticModel(data: kats.consts.TimeSeriesData, params: kats.models.quadratic_model.QuadraticModelParams)[source]¶
Bases:
Generic
[kats.models.model.ParamsType
]Model class for Quadratic Model.
This class provides the fit, predict and plot methods for the Quadratic Model
- data¶
the input time series data as
kats.consts.TimeSeriesData
- params¶
the parameter class defined with QuadraticModelParams
- static get_parameter_search_space() → List[Dict[str, object]][source]¶
get default parameter search space for Quadratic model.
- predict(steps: int, include_history=False, **kwargs) → pandas.core.frame.DataFrame[source]¶
predict with fitted quadratic model.
- Parameters
steps – the steps or length of the prediction horizon
include_history – whether to include the historical data in the prediction
- Returns
time, fcst, fcst_lower, and fcst_upper
- Return type
The predicted dataframe with the following columns
- class kats.models.quadratic_model.QuadraticModelParams(alpha=0.05, **kwargs)[source]¶
Bases:
kats.consts.Params
Parameter class for Quadratic model.
This is the parameter class for the quadratic model. .. attribute:: alpha
The alpha level for the confidence interval. The default alpha = 0.05 returns a 95% confidence interval