kats.models.nowcasting.nowcasting module¶
Nowcasting is the basic model for short-term forecasting.
This modules contains class NowcastingParams, which is the class parameter and class NowcastingModel, which is the model.
Typical usage example:
nr = NowcastingModel(data = data, params = NowcastingParams(step = 10)) nr.feature_extraction() nr.label_extraction() nr.fit() output = nr.predict()
- class kats.models.nowcasting.nowcasting.NowcastingModel(data: kats.consts.TimeSeriesData, params: kats.models.nowcasting.nowcasting.NowcastingParams, model: Optional[Any] = None, feature_names: List[str] = [])[source]¶
Bases:
Generic
[kats.models.model.ParamsType
]The class for Nowcasting Model.
This class performs data processing and short term prediction, for time series based on machine learning methodology.
- TimeSeriesData¶
Time Series Data Source.
- NowcastingParams¶
parameters for Nowcasting.
- feature_extraction() → None[source]¶
Extracts features for time series data.
Example of output: .. list-table:: Title :widths: 10 50 25 25 25 :header-rows: 1
index - time - y - ROC_10 - ROC_15
30 - 2020-02-05 00:00:00 - 7234.93 - -0.278597 - -0.266019
31 - 2020-02-06 00:00:00 - 7272.51 - -0.275543 - -0.271799
- load_model(model_as_bytes: bytes) → None[source]¶
Loads model_as_str and decodes into the class NowcastingModel.
- Parameters
model_as_bytes – a binary variable, indicating whether to read as bytes.
- predict(model=None, df=None, **kwargs)[source]¶
Predicts the time series in the future.
Nowcasting forecasts at the time unit of step ahead. This is in order to keep precision and different from usual algorithms. If model or df are overwritten in the function, it won’t use the internal ones.
- Parameters
model – An external sklearn model.
df – An external dataset.
- Returns
A float variable, the forecast at future step.