Ocean
Ocean::Geometry::NonLinearUniversalOptimizationSparse Class Reference

This class implements optimizations for universal sparse problems. More...

Inheritance diagram for Ocean::Geometry::NonLinearUniversalOptimizationSparse:

Data Structures

class  IndividualModelsIndividualModels
 This class implements an optimization for universal sparse problems with two types of individual models (optimization problems). More...
 
class  SharedModelIndividualModels
 This class implements an optimization for universal sparse problems with one shared model (optimization problem) and concurrently several individual models (optimization problems). More...
 
class  SharedModelIndividualModelsIndividualModels
 This class implements an optimization for universal sparse problems with one common shared model (optimization problem) and two types of individual models (optimization problems). More...
 

Additional Inherited Members

- Static Protected Member Functions inherited from Ocean::Geometry::NonLinearOptimization
template<typename T >
static bool denseOptimization (T &provider, const unsigned int iterations=5u, const Estimator::EstimatorType estimator=Estimator::ET_SQUARE, Scalar lambda=Scalar(0.001), const Scalar lambdaFactor=Scalar(5), Scalar *initialError=nullptr, Scalar *finalError=nullptr, const Matrix *invertedCovariances=nullptr, Scalars *intermediateErrors=nullptr)
 Invokes the optimization of a dense (matrix) optimization problem. More...
 
template<typename T , Estimator::EstimatorType tEstimator>
static bool denseOptimization (T &provider, const unsigned int iterations=5u, Scalar lambda=Scalar(0.001), const Scalar lambdaFactor=Scalar(5), Scalar *initialError=nullptr, Scalar *finalError=nullptr, const Matrix *invertedCovariances=nullptr, Scalars *intermediateErrors=nullptr)
 Invokes the optimization of a dense (matrix) optimization problem. More...
 
template<typename T >
static bool sparseOptimization (T &provider, const unsigned int iterations=5u, const Estimator::EstimatorType estimator=Estimator::ET_SQUARE, Scalar lambda=Scalar(0.001), const Scalar lambdaFactor=Scalar(5), Scalar *initialError=nullptr, Scalar *finalError=nullptr, const Matrix *invertedCovariances=nullptr, Scalars *intermediateErrors=nullptr)
 Invokes the optimization of a sparse (matrix) optimization problem. More...
 
template<typename T , Estimator::EstimatorType tEstimator>
static bool sparseOptimization (T &provider, const unsigned int iterations=5u, Scalar lambda=Scalar(0.001), const Scalar lambdaFactor=Scalar(5), Scalar *initialError=nullptr, Scalar *finalError=nullptr, const Matrix *invertedCovariances=nullptr, Scalars *intermediateErrors=nullptr)
 Invokes the optimization of a sparse (matrix) optimization problem. More...
 
template<typename T >
static bool advancedDenseOptimization (T &advancedDenseProvider, const unsigned int iterations, Scalar lambda, const Scalar lambdaFactor, Scalar *initialError=nullptr, Scalar *finalError=nullptr, Scalars *intermediateErrors=nullptr)
 Invokes the optimization of a dense (matrix) optimization problem using an advanced optimization provider. More...
 
template<typename T >
static bool advancedSparseOptimization (T &advancedSparseProvider, const unsigned int iterations, Scalar lambda, const Scalar lambdaFactor, Scalar *initialError=nullptr, Scalar *finalError=nullptr, Scalars *intermediateErrors=nullptr)
 Invokes the optimization of a sparse (matrix) optimization problem using an advanced optimization provider. More...
 
template<Estimator::EstimatorType tEstimator>
static Scalar sqrErrors2robustErrors2 (const Scalars &sqrErrors, const size_t modelParameters, Vector2 *weightedErrors, Vector2 *weightVectors, const SquareMatrix2 *transposedInvertedCovariances)
 Translates the n/2 squared errors that correspond to n elements in the error vector to robust errors. More...
 
template<Estimator::EstimatorType tEstimator, size_t tDimension>
static Scalar sqrErrors2robustErrors (const Scalars &sqrErrors, const size_t modelParameters, StaticBuffer< Scalar, tDimension > *weightedErrors, StaticBuffer< Scalar, tDimension > *weightVectors, const Matrix *transposedInvertedCovariances)
 Translates the n/i squared errors that correspond to n elements in the error vector to robust errors. More...
 
template<Estimator::EstimatorType tEstimator>
static Scalar sqrErrors2robustErrors_i (const Scalars &sqrErrors, const size_t modelParameters, const size_t dimension, Scalar *weightedErrors_i, Scalar *weightVectors_i, const Matrix *transposedInvertedCovariances_i)
 Translates the n/i squared errors that correspond to n elements in the error vector to robust errors. More...
 
static Scalar sqrErrors2robustErrors2 (const Estimator::EstimatorType estimator, const Scalars &sqrErrors, const size_t modelParameters, Vector2 *weightedErrors, Vector2 *weightVectors, const SquareMatrix2 *transposedInvertedCovariances)
 Translates the n/2 squared errors that correspond to n elements in the error vector to robust errors. More...
 
template<size_t tDimension>
static Scalar sqrErrors2robustErrors (const Estimator::EstimatorType estimator, const Scalars &sqrErrors, const size_t modelParameters, StaticBuffer< Scalar, tDimension > *weightedErrors, StaticBuffer< Scalar, tDimension > *weightVectors, const Matrix *transposedInvertedCovariances)
 Translates the n/i squared errors that correspond to n elements in the error vector to robust errors. More...
 
static Scalar sqrErrors2robustErrors_i (const Estimator::EstimatorType estimator, const Scalars &sqrErrors, const size_t modelParameters, const size_t dimension, Scalar *weightedErrors_i, Scalar *weightVectors_i, const Matrix *transposedInvertedCovariances_i)
 Translates the n/i squared errors that correspond to n elements in the error vector to robust errors. More...
 

Detailed Description

This class implements optimizations for universal sparse problems.


The documentation for this class was generated from the following file: