This class implements least square or robust optimization algorithms optimizing lines.
More...
|
template<typename T > |
static bool | denseOptimization (T &provider, const unsigned int iterations=5u, const Estimator::EstimatorType estimator=Estimator::ET_SQUARE, Scalar lambda=Scalar(0.001), const Scalar lambdaFactor=Scalar(5), Scalar *initialError=nullptr, Scalar *finalError=nullptr, const Matrix *invertedCovariances=nullptr, Scalars *intermediateErrors=nullptr) |
| Invokes the optimization of a dense (matrix) optimization problem. More...
|
|
template<typename T , Estimator::EstimatorType tEstimator> |
static bool | denseOptimization (T &provider, const unsigned int iterations=5u, Scalar lambda=Scalar(0.001), const Scalar lambdaFactor=Scalar(5), Scalar *initialError=nullptr, Scalar *finalError=nullptr, const Matrix *invertedCovariances=nullptr, Scalars *intermediateErrors=nullptr) |
| Invokes the optimization of a dense (matrix) optimization problem. More...
|
|
template<typename T > |
static bool | sparseOptimization (T &provider, const unsigned int iterations=5u, const Estimator::EstimatorType estimator=Estimator::ET_SQUARE, Scalar lambda=Scalar(0.001), const Scalar lambdaFactor=Scalar(5), Scalar *initialError=nullptr, Scalar *finalError=nullptr, const Matrix *invertedCovariances=nullptr, Scalars *intermediateErrors=nullptr) |
| Invokes the optimization of a sparse (matrix) optimization problem. More...
|
|
template<typename T , Estimator::EstimatorType tEstimator> |
static bool | sparseOptimization (T &provider, const unsigned int iterations=5u, Scalar lambda=Scalar(0.001), const Scalar lambdaFactor=Scalar(5), Scalar *initialError=nullptr, Scalar *finalError=nullptr, const Matrix *invertedCovariances=nullptr, Scalars *intermediateErrors=nullptr) |
| Invokes the optimization of a sparse (matrix) optimization problem. More...
|
|
template<typename T > |
static bool | advancedDenseOptimization (T &advancedDenseProvider, const unsigned int iterations, Scalar lambda, const Scalar lambdaFactor, Scalar *initialError=nullptr, Scalar *finalError=nullptr, Scalars *intermediateErrors=nullptr) |
| Invokes the optimization of a dense (matrix) optimization problem using an advanced optimization provider. More...
|
|
template<typename T > |
static bool | advancedSparseOptimization (T &advancedSparseProvider, const unsigned int iterations, Scalar lambda, const Scalar lambdaFactor, Scalar *initialError=nullptr, Scalar *finalError=nullptr, Scalars *intermediateErrors=nullptr) |
| Invokes the optimization of a sparse (matrix) optimization problem using an advanced optimization provider. More...
|
|
template<Estimator::EstimatorType tEstimator> |
static Scalar | sqrErrors2robustErrors2 (const Scalars &sqrErrors, const size_t modelParameters, Vector2 *weightedErrors, Vector2 *weightVectors, const SquareMatrix2 *transposedInvertedCovariances) |
| Translates the n/2 squared errors that correspond to n elements in the error vector to robust errors. More...
|
|
template<Estimator::EstimatorType tEstimator, size_t tDimension> |
static Scalar | sqrErrors2robustErrors (const Scalars &sqrErrors, const size_t modelParameters, StaticBuffer< Scalar, tDimension > *weightedErrors, StaticBuffer< Scalar, tDimension > *weightVectors, const Matrix *transposedInvertedCovariances) |
| Translates the n/i squared errors that correspond to n elements in the error vector to robust errors. More...
|
|
template<Estimator::EstimatorType tEstimator> |
static Scalar | sqrErrors2robustErrors_i (const Scalars &sqrErrors, const size_t modelParameters, const size_t dimension, Scalar *weightedErrors_i, Scalar *weightVectors_i, const Matrix *transposedInvertedCovariances_i) |
| Translates the n/i squared errors that correspond to n elements in the error vector to robust errors. More...
|
|
static Scalar | sqrErrors2robustErrors2 (const Estimator::EstimatorType estimator, const Scalars &sqrErrors, const size_t modelParameters, Vector2 *weightedErrors, Vector2 *weightVectors, const SquareMatrix2 *transposedInvertedCovariances) |
| Translates the n/2 squared errors that correspond to n elements in the error vector to robust errors. More...
|
|
template<size_t tDimension> |
static Scalar | sqrErrors2robustErrors (const Estimator::EstimatorType estimator, const Scalars &sqrErrors, const size_t modelParameters, StaticBuffer< Scalar, tDimension > *weightedErrors, StaticBuffer< Scalar, tDimension > *weightVectors, const Matrix *transposedInvertedCovariances) |
| Translates the n/i squared errors that correspond to n elements in the error vector to robust errors. More...
|
|
static Scalar | sqrErrors2robustErrors_i (const Estimator::EstimatorType estimator, const Scalars &sqrErrors, const size_t modelParameters, const size_t dimension, Scalar *weightedErrors_i, Scalar *weightVectors_i, const Matrix *transposedInvertedCovariances_i) |
| Translates the n/i squared errors that correspond to n elements in the error vector to robust errors. More...
|
|
This class implements least square or robust optimization algorithms optimizing lines.