Ocean
Loading...
Searching...
No Matches
Sphere3.h
Go to the documentation of this file.
1/*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 *
4 * This source code is licensed under the MIT license found in the
5 * LICENSE file in the root directory of this source tree.
6 */
7
8#ifndef META_OCEAN_MATH_SPHERE_3_H
9#define META_OCEAN_MATH_SPHERE_3_H
10
11#include "ocean/math/Math.h"
12#include "ocean/math/Box3.h"
13#include "ocean/math/Line3.h"
14#include "ocean/math/Vector3.h"
15
16namespace Ocean
17{
18
19// Forward declaration.
20template <typename T>
21class SphereT3;
22
23/**
24 * Definition of the Sphere3 object, depending on the OCEAN_MATH_USE_SINGLE_PRECISION either with single or double precision float data type.
25 * @see SphereT3
26 * @ingroup math
27 */
29
30/**
31 * Definition of a 3D sphere with double values.
32 * @see SphereT3
33 * @ingroup math
34 */
36
37/**
38 * Definition of a 3D sphere with float values.
39 * @see SphereT3
40 * @ingroup math
41 */
43
44/**
45 * Definition of a vector holding Shpere3 objects.
46 * @see Sphere3
47 * @ingroup math
48 */
49typedef std::vector<Sphere3> Spheres3;
50
51/**
52 * This class implements a 3D sphere.
53 * @ingroup math
54 */
55template <typename T>
57{
58 public:
59
60 /**
61 * Creates an invalid sphere.
62 */
63 SphereT3() = default;
64
65 /**
66 * Creates a new sphere by a center point and a radius.
67 * @param center The center of the sphere
68 * @param radius The radius of the sphere, with range [0, infinity), negative to create an invalid sphere
69 */
70 inline SphereT3(const VectorT3<T>& center, const T radius);
71
72 /**
73 * Creates a new sphere entirely containing a given 3D box.
74 * @param boundingBox The box which will be contained by the new sphere, must be valid
75 */
76 explicit inline SphereT3(const BoxT3<T>& boundingBox);
77
78 /**
79 * Returns the center of the sphere.
80 * @return Sphere center
81 */
82 inline const VectorT3<T>& center() const;
83
84 /**
85 * Returns the radius of the sphere.
86 * @return Sphere radius, with range [0, infinity), negative if invalid
87 */
88 inline const T& radius() const;
89
90 /**
91 * Returns whether a given point is inside this sphere.
92 * @param point The point to check
93 * @return True, if so
94 */
95 inline bool isInside(const VectorT3<T>& point) const;
96
97 /**
98 * Returns whether a given point is inside this sphere including a thin epsilon boundary.
99 * @param point The point to check
100 * @param eps Epsilon to be used, with range [0, infinity)
101 * @return True, if so
102 */
103 inline bool isInsideEps(const VectorT3<T>& point, const T eps = NumericT<T>::eps()) const;
104
105 /**
106 * Returns whether a given ray has an intersection with this sphere.
107 * @param ray The ray to be tested
108 * @return True, if so
109 */
110 bool hasIntersection(const LineT3<T>& ray) const;
111
112 /**
113 * Returns whether a given ray has an intersection with this sphere.
114 * @param ray Ray to be tested, must be valid
115 * @param sphere_T_ray The transformation between ray and this sphere, must be valid
116 * @return True, if so
117 */
118 inline bool hasIntersection(const LineT3<T>& ray, const HomogenousMatrixT4<T>& sphere_T_ray) const;
119
120 /**
121 * Returns whether two spheres have an intersection.
122 * @param sphere Second sphere to test
123 * @return True, if so
124 */
125 inline bool hasIntersection(const SphereT3<T>& sphere) const;
126
127 /**
128 * Returns whether this radius of this sphere is not negative and thus the sphere is valid.
129 * @return True, if so
130 */
131 inline bool isValid() const;
132
133 /**
134 * Returns a new sphere with an enlarged radius (the center of the sphere stays constant).
135 * @param factor The factor to be multiplied with the radius of this sphere, with range [0, infinity)
136 * @return New resulting sphere
137 */
138 inline SphereT3<T> operator*(const T factor) const;
139
140 /**
141 * Multiplies the radius of this sphere with a given factor.
142 * @param factor The factor to be multiplied with the radius, with range [0, infinity)
143 * @return Reference to this sphere object
144 */
145 inline SphereT3<T>& operator*=(const T factor);
146
147 /**
148 * Converts a 2D location coordinate on the surface of a unit sphere to a vector with unit length.
149 * The north/south axis of the sphere is parallel to the y-axis, the z-axis points towards the longitude 0 at the equator, the x-axis points towards the longitude PI/2 at the equator.
150 * @param latitude The latitude coordinate of the location, in radian, with range [-PI/2, PI/2]
151 * @param longitude The longitude coordinate of the location, in radian, with range [-PI, PI]
152 * @return The corresponding 3D vector with unit length
153 */
154 static VectorT3<T> coordinateToVector(const T latitude, const T longitude);
155
156 /**
157 * Converts a vector pointing to the surface of a unit sphere to a 2D location coordinate.
158 * @param coordinateVector The vector pointing to the location on the unit sphere, must have unit length
159 * @param latitude The resulting latitude coordinate of the location, in radian, with range range [-PI/2, PI/2]
160 * @param longitude The resulting longitude coordinate of the location, in radian, with range range [-PI, PI]
161 */
162 static void vectorToCoordinate(const VectorT3<T>& coordinateVector, T& latitude, T& longitude);
163
164 /**
165 * Calculates the shortest distance between two 2D location coordinates on the surface of a unit sphere.
166 * The shortest distance is identical to the shortest angle (in radian) in a unit sphere.<br>
167 * This function applies the Haversine formula.
168 * @param latitudeA The latitude coordinate of the first location, in radian, with range [-PI/2, PI/2]
169 * @param longitudeA The longitude coordinate of the first location, in radian, with range [-PI, PI]
170 * @param latitudeB The latitude coordinate of the second location, in radian, with range [-PI/2, PI/2]
171 * @param longitudeB The longitude coordinate of the second location, in radian, with range [-PI, PI]
172 * @return The shortest distance on the unit sphere, with range [0, PI]
173 */
174 static T shortestDistance(const T latitudeA, const T longitudeA, const T latitudeB, const T longitudeB);
175
176 protected:
177
178 /// Sphere center.
180
181 /// Sphere radius.
182 T radius_ = T(-1);
183};
184
185template <typename T>
186inline SphereT3<T>::SphereT3(const VectorT3<T>& center, const T radius) :
187 center_(center),
188 radius_(radius)
189{
190 // nothing to do here
191}
192
193template <typename T>
194inline SphereT3<T>::SphereT3(const BoxT3<T>& boundingBox) :
195 center_(boundingBox.center()),
196 radius_(boundingBox.diagonal() * T(0.5))
197{
198 ocean_assert(boundingBox.isValid());
199 ocean_assert(isValid());
200}
201
202template <typename T>
203inline const VectorT3<T>& SphereT3<T>::center() const
204{
205 return center_;
206}
207
208template <typename T>
209inline const T& SphereT3<T>::radius() const
210{
211 return radius_;
212}
213
214template <typename T>
215inline bool SphereT3<T>::isInside(const VectorT3<T>& point) const
216{
217 ocean_assert(isValid());
218
219 // a point is inside this sphere if:
220 // |center - point| <= radius
221
222 return center_.sqrDistance(point) <= NumericT<T>::sqr(radius_);
223}
224
225template <typename T>
226bool SphereT3<T>::isInsideEps(const VectorT3<T>& point, const T eps) const
227{
228 ocean_assert(isValid());
229 ocean_assert(eps >= T(0));
230
231 // a point is inside this sphere if:
232 // |center - point| <= radius + eps
233
234 return center_.sqrDistance(point) <= NumericT<T>::sqr(radius_ + eps);
235}
236
237template <typename T>
239{
240 ocean_assert(isValid());
241 ocean_assert(ray.isValid());
242
243 // (d * d) * t^2 + (2 * d * (p - o)) * t + (p - o)*(p - o) - r^2 == 0
244 // a * t^2 + b * t + c == 0
245
246 const VectorT3<T>& d = ray.direction();
247 const VectorT3<T>& p = ray.point();
248 const VectorT3<T>& o = center_;
249
250 const VectorT3<T> po(p - o);
251
252 const T a = d * d;
253 const T b = (d * po) * 2;
254 const T c = po * po - radius_ * radius_;
255
256 return b * b >= 4 * a * c;
257}
258
259template <typename T>
260inline bool SphereT3<T>::hasIntersection(const LineT3<T>& ray, const HomogenousMatrixT4<T>& sphere_T_ray) const
261{
262 ocean_assert(sphere_T_ray.isValid());
263 ocean_assert(ray.isValid());
264
265 return hasIntersection(LineT3<T>(sphere_T_ray * ray.point(), sphere_T_ray.rotationMatrix(ray.direction())));
266}
267
268template <typename T>
269inline bool SphereT3<T>::hasIntersection(const SphereT3<T>& sphere) const
270{
271 ocean_assert(isValid());
272 ocean_assert(sphere.isValid());
273
274 // two spheres have an intersection if:
275 // |center0 - center1| <= radius0 + radius1
276
277 return center_.sqrDistance(sphere.center_) <= NumericT<T>::sqr(radius_ + sphere.radius_);
278}
279
280template <typename T>
281inline bool SphereT3<T>::isValid() const
282{
283 return radius_ >= T(0);
284}
285
286template <typename T>
287inline SphereT3<T> SphereT3<T>::operator*(const T factor) const
288{
289 ocean_assert(isValid());
290 ocean_assert(factor >= 0);
291
292 return SphereT3<T>(center_, radius_ * factor);
293}
294
295template <typename T>
297{
298 ocean_assert(isValid());
299 ocean_assert(factor >= T(0));
300
301 radius_ *= factor;
302 return *this;
303}
304
305template <typename T>
306VectorT3<T> SphereT3<T>::coordinateToVector(const T latitude, const T longitude)
307{
309 ocean_assert(NumericT<T>::isInsideRange(-NumericT<T>::pi(), longitude, NumericT<T>::pi()));
310
311 const T d = NumericT<T>::cos(latitude);
312
313 const VectorT3<T> coordinateVector(NumericT<T>::sin(longitude) * d, NumericT<T>::sin(latitude), NumericT<T>::cos(longitude) * d);
314 ocean_assert(coordinateVector.isUnit());
315
316 return coordinateVector;
317}
318
319template <typename T>
320void SphereT3<T>::vectorToCoordinate(const VectorT3<T>& coordinateVector, T& latitude, T& longitude)
321{
322 ocean_assert(coordinateVector.isUnit());
323
324 latitude = NumericT<T>::asin(coordinateVector.y());
325
326 if (NumericT<T>::isEqualEps(coordinateVector.x()) && NumericT<T>::isEqualEps(coordinateVector.z()))
327 {
328 longitude = 0; // we are at one of both poles, any value is correct
329 }
330 else
331 {
332 longitude = NumericT<T>::atan2(coordinateVector.x(), coordinateVector.z());
333 }
334}
335
336template <typename T>
337T SphereT3<T>::shortestDistance(const T latitudeA, const T longitudeA, const T latitudeB, const T longitudeB)
338{
341
342 // great-circle distance between two points (shortest distance between two points on a sphere) using Haversine formula
343
344 const T latitudeDelta_2 = (latitudeB - latitudeA) * T(0.5);
345 const T longitudeDelta_2 = (longitudeB - longitudeA) * T(0.5);
346
347 const T inner = NumericT<T>::sqr(NumericT<T>::sin(latitudeDelta_2)) + NumericT<T>::cos(latitudeA) * NumericT<T>::cos(latitudeB) * NumericT<T>::sqr(NumericT<T>::sin(longitudeDelta_2));
348 ocean_assert(inner >= T(0));
349
350 return T(2) * NumericT<T>::asin(NumericT<T>::sqrt(inner));
351}
352
353}
354
355#endif // META_OCEAN_MATH_SPHERE_3_H
This class implements an axis aligned 3D bounding box.
Definition Box3.h:67
bool isValid() const
Returns whether the bounding box is valid.
This class implements a 4x4 homogeneous transformation matrix using floating point values with the pr...
Definition HomogenousMatrix4.h:110
SquareMatrixT3< T > rotationMatrix() const
Returns the rotation matrix of the transformation.
Definition HomogenousMatrix4.h:1493
bool isValid() const
Returns whether this matrix is a valid homogeneous transformation.
Definition HomogenousMatrix4.h:1806
This class implements an infinite line in 3D space.
Definition Line3.h:68
bool isValid() const
Returns whether this line has valid parameters.
Definition Line3.h:301
const VectorT3< T > & direction() const
Returns the direction of the line.
Definition Line3.h:282
const VectorT3< T > & point() const
Returns a point on the line.
Definition Line3.h:269
This class provides basic numeric functionalities.
Definition Numeric.h:57
static T atan2(const T y, const T x)
Returns the arctangent of a given value in radian.
Definition Numeric.h:1632
static constexpr T sqr(const T value)
Returns the square of a given value.
Definition Numeric.h:1495
static T cos(const T value)
Returns the cosine of a given value.
Definition Numeric.h:1584
static T asin(const T value)
Returns the arcsine of a given value.
Definition Numeric.h:2887
This class implements a 3D sphere.
Definition Sphere3.h:57
bool isInsideEps(const VectorT3< T > &point, const T eps=NumericT< T >::eps()) const
Returns whether a given point is inside this sphere including a thin epsilon boundary.
Definition Sphere3.h:226
bool isInside(const VectorT3< T > &point) const
Returns whether a given point is inside this sphere.
Definition Sphere3.h:215
bool hasIntersection(const LineT3< T > &ray, const HomogenousMatrixT4< T > &sphere_T_ray) const
Returns whether a given ray has an intersection with this sphere.
Definition Sphere3.h:260
VectorT3< T > center_
Sphere center.
Definition Sphere3.h:179
bool isValid() const
Returns whether this radius of this sphere is not negative and thus the sphere is valid.
Definition Sphere3.h:281
const T & radius() const
Returns the radius of the sphere.
Definition Sphere3.h:209
T radius_
Sphere radius.
Definition Sphere3.h:182
static VectorT3< T > coordinateToVector(const T latitude, const T longitude)
Converts a 2D location coordinate on the surface of a unit sphere to a vector with unit length.
Definition Sphere3.h:306
SphereT3()=default
Creates an invalid sphere.
SphereT3(const BoxT3< T > &boundingBox)
Creates a new sphere entirely containing a given 3D box.
Definition Sphere3.h:194
bool hasIntersection(const SphereT3< T > &sphere) const
Returns whether two spheres have an intersection.
Definition Sphere3.h:269
static void vectorToCoordinate(const VectorT3< T > &coordinateVector, T &latitude, T &longitude)
Converts a vector pointing to the surface of a unit sphere to a 2D location coordinate.
Definition Sphere3.h:320
bool hasIntersection(const LineT3< T > &ray) const
Returns whether a given ray has an intersection with this sphere.
Definition Sphere3.h:238
SphereT3< T > operator*(const T factor) const
Returns a new sphere with an enlarged radius (the center of the sphere stays constant).
Definition Sphere3.h:287
const VectorT3< T > & center() const
Returns the center of the sphere.
Definition Sphere3.h:203
static T shortestDistance(const T latitudeA, const T longitudeA, const T latitudeB, const T longitudeB)
Calculates the shortest distance between two 2D location coordinates on the surface of a unit sphere.
Definition Sphere3.h:337
SphereT3< T > & operator*=(const T factor)
Multiplies the radius of this sphere with a given factor.
Definition Sphere3.h:296
SphereT3(const VectorT3< T > &center, const T radius)
Creates a new sphere by a center point and a radius.
Definition Sphere3.h:186
This class implements a vector with three elements.
Definition Vector3.h:97
bool isUnit(const T eps=NumericT< T >::eps()) const
Returns whether this vector is a unit vector (whether the vector has the length 1).
Definition Vector3.h:873
const T & y() const noexcept
Returns the y value.
Definition Vector3.h:824
const T & x() const noexcept
Returns the x value.
Definition Vector3.h:812
const T & z() const noexcept
Returns the z value.
Definition Vector3.h:836
SphereT3< float > SphereF3
Definition of a 3D sphere with float values.
Definition Sphere3.h:42
std::vector< Sphere3 > Spheres3
Definition of a vector holding Shpere3 objects.
Definition Sphere3.h:49
SphereT3< Scalar > Sphere3
Definition of the Sphere3 object, depending on the OCEAN_MATH_USE_SINGLE_PRECISION either with single...
Definition Sphere3.h:28
SphereT3< double > SphereD3
Definition of a 3D sphere with double values.
Definition Sphere3.h:35
The namespace covering the entire Ocean framework.
Definition Accessor.h:15