Ocean
Loading...
Searching...
No Matches
Cylinder3.h
Go to the documentation of this file.
1/*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 *
4 * This source code is licensed under the MIT license found in the
5 * LICENSE file in the root directory of this source tree.
6 */
7
8#ifndef META_OCEAN_MATH_CYLINDER_3_H
9#define META_OCEAN_MATH_CYLINDER_3_H
10
11#include "ocean/math/Math.h"
12
13#include "ocean/math/Equation.h"
14#include "ocean/math/Line3.h"
15#include "ocean/math/Numeric.h"
16#include "ocean/math/Vector3.h"
17
18namespace Ocean
19{
20
21// Forward declaration.
22template <typename T>
23class CylinderT3;
24
25/**
26 * Definition of the Cylinder3 object, depending on the OCEAN_MATH_USE_SINGLE_PRECISION either with single or double precision float data type.
27 * @see CylinderT3
28 * @ingroup math
29 */
31
32/**
33 * Definition of a 3D cylinder with double values.
34 * @see CylinderT3
35 * @ingroup math
36 */
38
39/**
40 * Definition of a 3D cylinder with float values.
41 * @see CylinderT3
42 * @ingroup math
43 */
45
46/**
47 * Definition of a vector holding Cylinder3 objects.
48 * @see Cylinder3
49 * @ingroup math
50 */
51typedef std::vector<Cylinder3> Cylinders3;
52
53/**
54 * This class implements a 3D cylinder defined by its origin, axis, radius, and (signed) starting and stopping points along its axis.
55 *
56 * Consider a finite right cylinder, consisting of (1) two circular endcaps that lie in parallel planes and (2) the curved surface connecting the endcaps.
57 * Let one of these endcaps be the "bottom base" and the other endcap be the "top base" of the cylinder.
58 * The cylinder axis is the unit vector pointing from the center of the bottom base to the center of
59 * the top base.
60 * Since we are considering a right (i.e., non-oblique) cylinder, each cylinder base is perpendicular to the axis.
61 *
62 * Each cylinder has a 4DOF coordinate frame consisting of the line through its axis in 3D space.
63 * The cylinder origin can be defined using any 3D point lying on this line.
64 * The 3D center point of each cylinder base also lies on this line, at a fixed 1D distance along
65 * the line from the cylinder origin:
66 * bottom = origin + minSignedDistance * axis,
67 * top = origin + maxSignedDistance * axis.
68 *
69 * The cylinder radius, r, is defined as the radius of the two circular endcaps.
70 * For any 3D point X lying on the cylinder surface between the endcaps, the distance to the nearest point on the cylinder center-line is r.
71 *
72 * Note that the origin does not need to lie within the cylinder.
73 * Infinite cylinders (without endcaps) and half-infinite cylinders (with only one endcap) are also allowed.
74 *
75 * Currently, cylinder-ray intersection checking is only supported for portion of the cylinder between its endcaps. Ray intersections with cylinder endcaps are not computed.
76 * @ingroup math
77 */
78template <typename T>
80{
81 public:
82
83 /**
84 * Creates an invalid cylinder.
85 */
86 inline CylinderT3();
87
88 /**
89 * Defines a new cylinder with a base along its axis at distance = 0 and with the specified height (positive distance along the axis).
90 * @param origin 3D coordinate for the center of the base of the cylinder
91 * @param axis Direction vector of the cylinder's axis, expected to already be normalized to unit length
92 * @param radius Radius of the cylinder, with range (0, infinity)
93 * @param height The height of the cylinder, with range [0, infinity]
94 */
95 inline CylinderT3(const VectorT3<T>& origin, const VectorT3<T>& axis, const T radius, const T height);
96
97 /**
98 * Defines a new cylinder.
99 * @param origin 3D coordinate for the center of the base of the cylinder
100 * @param axis Direction vector of the cylinder's axis, expected to already be normalized to unit length
101 * @param radius Radius of the cylinder, with range (0, infinity)
102 * @param minSignedDistanceAlongAxis Signed distance along the axis for the bottom of the cylinder, with range [-infinity, maxSignedDistanceAlongAxis]
103 * @param maxSignedDistanceAlongAxis Signed distance along the axis for the top of the cylinder, with range [minSignedDistanceAlongAxis, infinity]
104 */
106
107 /**
108 * Returns the center of the cylinder's base
109 * @return Cylinder origin
110 */
111 inline const VectorT3<T>& origin() const;
112
113 /**
114 * Returns the unit-length axis of the cylinder.
115 * @return Cylinder axis
116 */
117 inline const VectorT3<T>& axis() const;
118
119 /**
120 * Returns the radius of the cylinder
121 * @return Cylinder radius, with range (0, infinity)
122 */
123 inline const T& radius() const;
124
125 /**
126 * Returns the minimum signed truncation distance along the cylinder's axis.
127 * @return Distance value, with range [-infinity, maxSignedDistanceAlongAxis]
128 */
129 inline const T& minSignedDistanceAlongAxis() const;
130
131 /**
132 * Returns the maximum signed truncation distance along the cylinder's axis.
133 * @return Distance value, with range [minSignedDistanceAlongAxis, infinity]
134 */
135 inline const T& maxSignedDistanceAlongAxis() const;
136
137 /**
138 * Returns the length of the cylinder along its axis
139 * @return Cylinder's height, with range [0, infinity]
140 */
141 inline T height() const;
142
143 /**
144 * Returns the closest point of intersection of a ray with the *outer surface* of the cylinder, ignoring intersections with the cylinder's base and intersections that 1) exit the cylinder or 2) are a negative signed distance along the ray.
145 * @param ray Ray for which to find the intersection, must be valid
146 * @param point Output 3D point of intersection
147 * @return True if the computed intersection point is valid, otherwie false
148 */
149 bool nearestIntersection(const LineT3<T>& ray, VectorT3<T>& point) const;
150
151 /**
152 * Returns whether this cylinder is valid.
153 * @return True, if so
154 */
155 inline bool isValid() const;
156
157 protected:
158
159 /// Center of the cylinder's base
161
162 /// Cylinder axis, a unit vector.
164
165 /// Radius of the cylinder.
167
168 /// Minimum signed truncation distance along the cone's axis.
170
171 /// Maximum signed truncation distance along the cone's axis.
173};
174
175template <typename T>
177 origin_(0.0, 0.0, 0.0),
178 axis_(0.0, 0.0, 0.0),
179 radius_(0.0),
180 minSignedDistanceAlongAxis_(0.0),
181 maxSignedDistanceAlongAxis_(0.0)
182{
183 // nothing to do here
184}
185
186template <typename T>
187inline CylinderT3<T>::CylinderT3(const VectorT3<T>& origin, const VectorT3<T>& axis, const T radius, const T height) :
188 CylinderT3(origin, axis, radius, T(0.0), height)
189{
190 // nothing to do here
191}
192
193template <typename T>
194CylinderT3<T>::CylinderT3(const VectorT3<T>& origin, const VectorT3<T>& axis, const T radius, const T minSignedDistanceAlongAxis, const T maxSignedDistanceAlongAxis) :
195 origin_(origin),
196 axis_(axis),
197 radius_(radius),
198 minSignedDistanceAlongAxis_(minSignedDistanceAlongAxis),
199 maxSignedDistanceAlongAxis_(maxSignedDistanceAlongAxis)
200{
201 ocean_assert(NumericT<T>::isEqual(axis.length(), 1));
203}
204
205template <typename T>
207{
208 return origin_;
209}
210
211template <typename T>
212inline const VectorT3<T>& CylinderT3<T>::axis() const
213{
214 return axis_;
215}
216
217template <typename T>
218inline const T& CylinderT3<T>::radius() const
219{
220 return radius_;
221}
222
223template <typename T>
225{
226 return minSignedDistanceAlongAxis_;
227}
228
229template <typename T>
231{
232 return maxSignedDistanceAlongAxis_;
233}
234
235template <typename T>
236inline T CylinderT3<T>::height() const
237{
238 return maxSignedDistanceAlongAxis_ - minSignedDistanceAlongAxis_;
239}
240
241template <typename T>
242bool CylinderT3<T>::nearestIntersection(const LineT3<T>& ray, VectorT3<T>& intersection) const
243{
244 ocean_assert(isValid() && ray.isValid());
245
246 // First, we'll compute the intersection of the ray with an infinite cylinder -- i.e., we'll ignore the end caps of the cylinder.
247 // We'll then check if the intersection point falls between the cylinder caps (if applicable).
248 //
249 // Denote the cylinder origin as Q, its axis by unit vector q, and its radius as r.
250 // When Q is projected onto the 2D plane perpendicular to q, the projected point lies at the origin.
251 // The surface of the (infinite) cylinder is defined as
252 //
253 // S = { X \in R^3 | || (X - Q) - ((X - Q)^T * q) * q || = r },
254 //
255 // i.e., project 3D point X onto the 2D plane perpendicular to q, and check that this projected point lies on the circle with radius r.
256 //
257 // Denote the ray origin as C and its unit direction vector as d.
258 // An intersection point P \in S satisfies P = C + t * d, where t is the signed distance from the ray origin. We find values of t, accordingly.
259 //
260 // Denoting V = C - Q and then squaring the equation for the domain of S, we have
261 //
262 // [ V + t * d - ((V + t * d)^T * q) * q ]^2 = r^2,
263 //
264 // which reduces to
265 //
266 // [ d^T * d - (d^T * q)^2 ] * t^2 + 2 * [ d^T * V - (d^T * q) * (V^T * q) ] * t + [ (V^T * V) - (V^T * q)^2 - r^2] = 0,
267 //
268 // which we can then solve using the quadratic equation.
269
270 const VectorT3<T> V = ray.point() - origin_;
271 const VectorT3<T>& d = ray.direction();
272 const VectorT3<T>& q = axis_;
273
274 const T d_dot_q = d * q;
275 const T d_dot_d = d.sqr();
276 const T V_dot_q = V * q;
277 const T V_dot_d = V * d;
278 const T V_dot_V = V.sqr();
279
280 const T a = d_dot_d - d_dot_q * d_dot_q;
281 const T b = T(2.) * (V_dot_d - d_dot_q * V_dot_q);
282 const T c = V_dot_V - V_dot_q * V_dot_q - radius_ * radius_;
283
284 T minDistance = T(-1.), maxDistance = T(-1.);
285
286 if (EquationT<T>::solveQuadratic(a, b, c, minDistance, maxDistance))
287 {
288 minDistance = min(minDistance, maxDistance);
289 }
290 else
291 {
292 // Check the corner case of a linear equation (the axis and direction are parallel, and the
293 // point might be on the surface).
295 {
296 minDistance = -c / b;
297 }
298 }
299
300 if (minDistance < T(0.)) // use <= to disallow points exactly on the surface
301 {
302 return false;
303 }
304
305 intersection = ray.point(minDistance);
306
307 const T distanceAlongAxis = (intersection - origin_) * axis_; // signed distance of the intersection point projected onto the cylinder's axis
308 return (distanceAlongAxis >= minSignedDistanceAlongAxis_ && distanceAlongAxis <= maxSignedDistanceAlongAxis_);
309}
310
311template <typename T>
312inline bool CylinderT3<T>::isValid() const
313{
314 return radius_ > T(0.) && maxSignedDistanceAlongAxis_ >= minSignedDistanceAlongAxis_ && NumericT<T>::isEqual(axis_.sqr(), T(1.));
315}
316
317} // namespace Ocean
318
319#endif // META_OCEAN_MATH_CYLINDER_3_H
320
This class implements a 3D cylinder defined by its origin, axis, radius, and (signed) starting and st...
Definition Cylinder3.h:80
VectorT3< T > origin_
Center of the cylinder's base.
Definition Cylinder3.h:160
const T & maxSignedDistanceAlongAxis() const
Returns the maximum signed truncation distance along the cylinder's axis.
Definition Cylinder3.h:230
bool isValid() const
Returns whether this cylinder is valid.
Definition Cylinder3.h:312
const VectorT3< T > & axis() const
Returns the unit-length axis of the cylinder.
Definition Cylinder3.h:212
const T & radius() const
Returns the radius of the cylinder.
Definition Cylinder3.h:218
T maxSignedDistanceAlongAxis_
Maximum signed truncation distance along the cone's axis.
Definition Cylinder3.h:172
VectorT3< T > axis_
Cylinder axis, a unit vector.
Definition Cylinder3.h:163
T radius_
Radius of the cylinder.
Definition Cylinder3.h:166
bool nearestIntersection(const LineT3< T > &ray, VectorT3< T > &point) const
Returns the closest point of intersection of a ray with the outer surface of the cylinder,...
Definition Cylinder3.h:242
T height() const
Returns the length of the cylinder along its axis.
Definition Cylinder3.h:236
CylinderT3()
Creates an invalid cylinder.
Definition Cylinder3.h:176
const VectorT3< T > & origin() const
Returns the center of the cylinder's base.
Definition Cylinder3.h:206
const T & minSignedDistanceAlongAxis() const
Returns the minimum signed truncation distance along the cylinder's axis.
Definition Cylinder3.h:224
T minSignedDistanceAlongAxis_
Minimum signed truncation distance along the cone's axis.
Definition Cylinder3.h:169
This class provides several functions to solve equations with different degree using floating point v...
Definition Equation.h:53
This class implements an infinite line in 3D space.
Definition Line3.h:68
bool isValid() const
Returns whether this line has valid parameters.
Definition Line3.h:301
const VectorT3< T > & direction() const
Returns the direction of the line.
Definition Line3.h:282
const VectorT3< T > & point() const
Returns a point on the line.
Definition Line3.h:269
This class provides basic numeric functionalities.
Definition Numeric.h:57
static bool isEqual(const T first, const T second)
Returns whether two values are equal up to a small epsilon.
Definition Numeric.h:2386
This class implements a vector with three elements.
Definition Vector3.h:97
T sqr() const
Returns the square of the vector length.
Definition Vector3.h:682
CylinderT3< double > CylinderD3
Definition of a 3D cylinder with double values.
Definition Cylinder3.h:37
std::vector< Cylinder3 > Cylinders3
Definition of a vector holding Cylinder3 objects.
Definition Cylinder3.h:51
CylinderT3< Scalar > Cylinder3
Definition of the Cylinder3 object, depending on the OCEAN_MATH_USE_SINGLE_PRECISION either with sing...
Definition Cylinder3.h:30
CylinderT3< float > CylinderF3
Definition of a 3D cylinder with float values.
Definition Cylinder3.h:44
The namespace covering the entire Ocean framework.
Definition Accessor.h:15