kats.detectors.bocpd_model module¶
This file implements the Bayesian Online Changepoint Detection algorithm as a DetectorModel, to provide a common interface.
- class kats.detectors.bocpd_model.BocpdDetectorModel(serialized_model: Optional[bytes] = None, slow_drift: bool = False, threshold: Optional[float] = None)[source]¶
- Bases: - kats.detectors.detector.DetectorModel- Implements the Bayesian Online Changepoint Detection as a DetectorModel. - This provides an unified interface, which is common to all detection algorithms. - serialized_model¶
- json containing information about stored model. 
 - slow_drift¶
- Boolean. True indicates we are trying to detect trend changes. False indicates we are trying to detect level changes. 
 - Typical Usage: level_ts is an instance of TimeSeriesData >>> bocpd_detector = BocpdDetectorModel() >>> anom = bocpd_detector.fit_predict(data=level_ts) - fit(data: kats.consts.TimeSeriesData, historical_data: Optional[kats.consts.TimeSeriesData] = None) → None[source]¶
- fit can be called during priming. It’s a noop for us. 
 - fit_predict(data: kats.consts.TimeSeriesData, historical_data: Optional[kats.consts.TimeSeriesData] = None) → kats.detectors.detector_consts.AnomalyResponse[source]¶
- Finds changepoints and returns score. - Uses the current data and historical data to find the changepoints, and returns an AnomalyResponse object, the scores corresponding to probability of changepoints. - Parameters
- data – TimeSeriesData object representing the data 
- historical_data – TimeSeriesdata object representing the history. Dats 
- start exactly where the historical_data ends. (should) – 
 
- Returns
- AnomalyResponse object, representing the changepoint probabilities. The score property contains the changepoint probabilities. The length of the object is the same as the length of the data. 
 
 - predict(data: kats.consts.TimeSeriesData, historical_data: Optional[kats.consts.TimeSeriesData] = None) → kats.detectors.detector_consts.AnomalyResponse[source]¶
- predict is not implemented