VizSeq
A Visual Analysis Toolkit for Text Generation (Translation, Captioning, Summarization, etc.)
Multi-Modal
Covering a wide range of {text, image, audio, video}-to-text generation tasks. Supporting multiple sources and references.
Usable
Built with a full collection of common metrics. Analyzing data in various formats. Providing visualization in both Jupyter Notebook and Web App interfaces.
Productive
Highly-integrated UI with samples and statistics in one place. Interactive data filtering with keyword searching, sorting and grouping. One-click export of tables and figures to slides, papers or spreadsheets.
Scalable
Multi-process acceleration of metrics and statistics computation. Auto-sampling and caching mechanism for performance on large-scale datasets.
Quickstart
Install VizSeq:
$ pip install vizseq
Use VizSeq in Jupyter notebook (APIs):
# Set up data inputsfrom glob import globroot = 'examples/data/translation_wmt14_en_de_test'src, ref, hypo = glob(f'{root}/src_*.txt'), glob(f'{root}/ref_*.txt'), glob(f'{root}/pred_*.txt')# View samples, scores and statisticsimport vizseqvizseq.view_stats(src, ref)vizseq.view_n_grams(src)vizseq.view_scores(ref, hypo, ['bleu', 'meteor'])vizseq.view_examples(src, ref, hypo, ['bleu', 'meteor'], query='book', page_sz=10, page_no=1)
Use VizSeq with Fairseq (APIs):
from vizseq.ipynb import fairseq_viz as vizseq_fslog_path = 'examples/data/wmt14_fr_en_test.fairseq_generate.log'# Similar APIs to normal Jupyter Notebook APIsvizseq_fs.view_stats(log_path)vizseq_fs.view_n_grams(log_path)vizseq_fs.view_scores(log_path, ['bleu', 'meteor'])vizseq_fs.view_examples(log_path, ['bleu', 'meteor'], query='book', page_sz=10, page_no=1)
Use VizSeq Web App:
$ python -m vizseq.server --port 9001 --data-root examples/data
http://localhost:9001