Interface TensorOpsInterfacePrivate

Hierarchy

Methods

  • Compute the mathematical ceiling (round up) of each element in a tensor. There is a static function version of this method: ceil.

    $$\lceil x \rceil : \forall x \in T$$

    Example

      const t = sm.randn([128, 128])

    // equivalent calls
    const a = t.ceil()
    const b = sm.ceil(t)

    Returns

    Returns Tensor

  • Parameters

    • weights: Tensor
    • Optional sx: number
    • Optional sy: number
    • Optional px: number
    • Optional py: number
    • Optional dx: number
    • Optional dy: number
    • Optional groups: number

    Returns Tensor

  • Compute the cosine function each element in a tensor. There is a static function version of this method: cos.

    $$\cos(x) : \forall x \in T$$

    Example

      const t = sm.randn([128, 128])

    // equivalent calls
    const a = t.cos()
    const b = sm.cos(t)

    Returns

    Returns Tensor

  • Compute the exponential of each element in a tensor. There is a static function version of this method: exp.

    $$e^x : \forall x \in T$$

    Example

      const t = sm.randn([100])

    // equivalent calls
    const a = t.exp()
    const b = sm.exp(t)

    Returns

    Returns Tensor

  • Compute the mathematical floor (round down) of each element in a tensor. There is a static function version of this method: floor.

    $$\lfloor x \rfloor : \forall x \in T$$

    Example

      const t = sm.randn([128, 128])

    // equivalent calls
    const a = t.floor()
    const b = sm.floor(t)

    Returns

    Returns Tensor

  • Compute the natural logarithm of each element in a tensor. There is a static function version of this method: log.

    $$\ln(x) : \forall x \in T$$

    Example

      const t = sm.randn([100])

    // equivalent calls
    const a = t.log()
    const b = sm.log(t)

    Returns

    Returns Tensor

  • Compute the natural logarithm of one plus each element in a tensor. There is a static function version of this method: log1p.

    $$\ln(1 + x) : \forall x \in T$$

    Example

      const t = sm.randn([100])

    // equivalent calls
    const a = t.log1p()
    const b = sm.log1p(t)

    Returns

    Returns Tensor

  • Take the logical not of every element in a tensor. There is a static function version of this method: logicalNot.

    $$\neg x : \forall x \in T$$

    Example

      const t = sm.rand([100]).greaterThan(sm.scalar(0.5))

    // equivalent calls
    const a = t.logicalNot()
    const b = sm.logicalNot(t)

    Returns

    Returns Tensor

  • Determine the indices of elements that are non-zero. There is a static function version of this method: nonzero.

    Remarks

    Indices correspond to a flattened version of the input tensor.

    Example

      const t = sm.randn([100])

    // equivalent calls
    const a = t.nonzero()
    const b = sm.nonzero(t)

    Returns

    • A new Tensor composed of the flattened indices of the non-zero elements in the input

    Returns Tensor

  • Reshape a Tensor without modifying the underlying data. There is a static function version of this method: reshape.

    Remarks

    The resultant shape must contain the same number of elements as the base Tensor.

    Example

      const t = sm.randn([64])

    // equivalent calls
    const a = t.reshape([8, 8])
    const b = sm.reshape(t, [8, 8])

    Parameters

    • shape: BigInt64Array | number[]

      The shape of the output Tensor

    Returns Tensor

  • Round each element in a tensor to the nearest integer. There is a static function version of this method: rint.

    $$ x = \begin{cases} \lfloor x \rfloor,& \text{if } x - \lfloor x \rfloor \leq \frac{1}{2}\\ \lceil x \rceil,& \text{otherwise} \end{cases} \forall x \in T $$

    Example

      const t = sm.randn([128, 128])

    // equivalent calls
    const a = t.rint()
    const b = sm.rint(t)

    Returns

    Returns Tensor

  • Calculate the sigmoid (logistic function) for each element in a Tensor. There is a static function version of this method: sigmoid.

    $$\frac{1}{1 + e^{-x}} : \forall x \in T$$

    Example

      const t = sm.randn([1337])

    // equivalent calls
    const a = t.sigmoid()
    const b = sm.sigmoid(t)

    Returns

    Returns Tensor

  • Compute the sine function each element in a tensor. There is a static function version of this method: sin.

    $$\sin(x) : \forall x \in T$$

    Example

      const t = sm.randn([128, 128])

    // equivalent calls
    const a = t.sin()
    const b = sm.sin(t)

    Returns

    Returns Tensor

  • Compute the square root of each element in a tensor. There is a static function version of this method: sqrt.

    $$\sqrt x : \forall x \in T$$

    Example

      const t = sm.randn([128, 128])

    // equivalent calls
    const a = t.sqrt()
    const b = sm.sqrt(t)

    Returns

    Returns Tensor

  • Compute the hyperbolic tangent function each element in a tensor. There is a static function version of this method: tanh.

    $$\tanh(x) : \forall x \in T$$

    Example

      const t = sm.randn([128, 128])

    // equivalent calls
    const a = t.tanh()
    const b = sm.tanh(t)

    Returns

    Returns Tensor

  • Replicate a Tensor about its axes. There is a static function version of this method: tile.

    Example

      const t = sm.identity(4)

    // equivalent calls
    const a = sm.tile(t, [2, 2])
    a.shape // [8, 8]
    const b = t.tile([2, 2])
    b.shape // [8, 8]

    // tiling by 1 on all dims does nothing
    const no_op = t.tile([1, 1])

    Returns

    A new Tensor

    Parameters

    • shape: BigInt64Array | number[]

      A shape describing the number of iterations to tile each axis.

    Returns Tensor

  • Re-arrange the layout of the values within a Tensor. There is a static function version of this method: transpose.

    Remarks

    The total number of elements of the tensor does not change.

    Example

      const t = sm.rand([128, 8])

    // equivalent calls
    const a = t.transpose([1, 0])
    a.shape // [8, 128]
    const b = sm.transpose(t, [1, 0])
    b.shape // [8, 128]

    Returns

    A new Tensor

    Parameters

    • axes: BigInt64Array | number[]

      The new order of the indices of the current axes after tranposing

    Returns Tensor

Generated using TypeDoc