Ocean
Loading...
Searching...
No Matches
Cone3.h
Go to the documentation of this file.
1/*
2 * Copyright (c) Meta Platforms, Inc. and affiliates.
3 *
4 * This source code is licensed under the MIT license found in the
5 * LICENSE file in the root directory of this source tree.
6 */
7
8#ifndef META_OCEAN_MATH_CONE_3_H
9#define META_OCEAN_MATH_CONE_3_H
10
11#include "ocean/math/Math.h"
12
13#include "ocean/math/Equation.h"
14#include "ocean/math/Line3.h"
15#include "ocean/math/Numeric.h"
16#include "ocean/math/Vector3.h"
17
18namespace Ocean
19{
20
21// Forward declaration.
22template <typename T>
23class ConeT3;
24
25/**
26 * Definition of the Cone3 object, depending on the OCEAN_MATH_USE_SINGLE_PRECISION either with single or double precision float data type.
27 * @see ConeT3
28 * @ingroup math
29 */
31
32/**
33 * Definition of a 3D cone with double values.
34 * @see ConeT3
35 * @ingroup math
36 */
38
39/**
40 * Definition of a 3D cone with float values.
41 * @see ConeT3
42 * @ingroup math
43 */
45
46/**
47 * Definition of a vector holding Cone3 objects.
48 * @see Cone3
49 * @ingroup math
50 */
51typedef std::vector<Cone3> Cones3;
52
53/**
54 * This class implements a (possibly truncated) 3D cone.
55 * @ingroup math
56 */
57template <typename T>
58class ConeT3
59{
60 public:
61
62 /**
63 * Creates an invalid cone.
64 */
65 ConeT3() = default;
66
67 /**
68 * Defines a new cone.
69 * @param apex 3D coordinate for the tip of the cone
70 * @param axis Direction vector of the cone's axis, expected to already be normalized to unit length
71 * @param apexAngle Angle in radians formed at the apex by any vertical slice of the cone through its apex, must be in (0, pi)
72 * @param minSignedDistanceAlongAxis For a truncated cone, the minimum signed distance along the cone's axis at which the cones stops, defaults to the apex of the cone (distance = 0); for an infinite cone, set the minimum radius to -infinity
73 * @param maxSignedDistanceAlongAxis For a truncated cone, the maximum signed distance along the cone's axis at which the cone stops; note that only horizontal slices (perpendicular to its axis) through the cone are supported
74 */
75 inline ConeT3(const VectorT3<T>& apex, const VectorT3<T>& axis, const T apexAngle, const T minSignedDistanceAlongAxis = T(0.0), const T maxSignedDistanceAlongAxis = std::numeric_limits<T>::infinity());
76
77 /**
78 * Returns the tip of the cone.
79 * @return Cone apex
80 */
81 inline const VectorT3<T>& apex() const;
82
83 /**
84 * Returns the unit-length axis of the cone.
85 * @return Cone axis
86 */
87 inline const VectorT3<T>& axis() const;
88
89 /**
90 * Returns the angle made between diametrically opposite points on the cone and the apex.
91 * @return Cone's apex angle in radians, in range (0, pi)
92 */
93 inline T apexAngle() const;
94
95 /**
96 * Returns the minimum signed truncation distance along the cone's axis. If the cone ends at its apex, the value is zero; otherwise, the value is simply less than maxSignedDistanceAlongAxis.
97 * @return Distance value, with range (-infinity, maxSignedDistanceAlongAxis)
98 */
99 inline const T& minSignedDistanceAlongAxis() const;
100
101 /**
102 * Returns the maximum signed truncation distance along the cone's axis.
103 * @return Distance value, with range (minSignedDistanceAlongAxis, infinity)
104 */
105 inline const T& maxSignedDistanceAlongAxis() const;
106
107 /**
108 * Returns the closest point of intersection of a ray with the *outer surface* of the cone, ignoring intersections with the cone's base and intersections that 1) exit the cone or 2) are a negative signed distance along the ray.
109 * @param ray Ray for which to find the intersection, must be valid
110 * @param point Output 3D point of intersection
111 * @return True if the computed intersection point is valid, otherwise false
112 */
113 bool nearestIntersection(const LineT3<T>& ray, VectorT3<T>& point) const;
114
115 /**
116 * Returns whether this cone is valid.
117 * @return True, if so
118 */
119 inline bool isValid() const;
120
121 protected:
122
123 /// Cone tip.
124 VectorT3<T> apex_ = VectorT3<T>(T(0), T(0), T(0));
125
126 /// Cone axis, a unit vector.
127 VectorT3<T> axis_ = VectorT3<T>(T(0), T(0), T(0));
128
129 /// Cosine-squared of half of the cone's apex angle.
131
132 /// Minimum signed truncation distance along the cone's axis.
134
135 /// Maximum signed truncation distance along the cone's axis.
137};
138
139template <typename T>
140inline ConeT3<T>::ConeT3(const VectorT3<T>& apex, const VectorT3<T>& axis, const T apexAngle, const T minSignedDistanceAlongAxis, const T maxSignedDistanceAlongAxis) :
141 apex_(apex),
142 axis_(axis),
143 cosSquaredHalfApexAngle_(NumericT<T>::sqr(NumericT<T>::cos(T(0.5) * apexAngle))),
144 minSignedDistanceAlongAxis_(minSignedDistanceAlongAxis),
145 maxSignedDistanceAlongAxis_(maxSignedDistanceAlongAxis)
146{
147 ocean_assert(NumericT<T>::isEqual(axis.length(), 1));
150}
151
152template <typename T>
153inline const VectorT3<T>& ConeT3<T>::apex() const
154{
155 return apex_;
156}
157
158template <typename T>
159inline const VectorT3<T>& ConeT3<T>::axis() const
160{
161 return axis_;
162}
163
164template <typename T>
165inline T ConeT3<T>::apexAngle() const
166{
167 ocean_assert(cosSquaredHalfApexAngle_ >= Scalar(0.0));
168 return T(2.0) * NumericT<T>::acos(NumericT<T>::sqrt(cosSquaredHalfApexAngle_));
169}
170
171template <typename T>
173{
174 return maxSignedDistanceAlongAxis_;
175}
176
177template <typename T>
179{
180 return minSignedDistanceAlongAxis_;
181}
182
183template <typename T>
185{
186 ocean_assert(isValid() && ray.isValid());
187
188 // Denote the cone apex as Q and its axis as q. Let the ray origin be C and its direction be d.
189 // The surface of the cone is defined as S = { X = \in R^3 | (1 / ||X - Q||) * (X - Q).q) = cos(theta/2), where theta is the apex angle of the cone.
190 // An intersection point P \in S satisfies P = C + t * d, where t is the signed distance from the ray origin. We find values of t, accordingly.
191 // Denoting V = C - Q and m = cos^2(theta/2), and then squaring the equation for the domain of S, we have
192 // (1 / ||V + t * d||^2) * [ (V + t * d).q ]^2 = m
193 // (V.q)^2 + 2 * t * V.q * d.q) + t^2 * (d.q)^2 = m * (V.V + t * 2 * V.d + t^2 * d.d) <= multiplied by ||.|| term and expanded
194 // => t^2 * ((d.q)^2 - m * d.d) + t * 2 * (V.q * d.q - m * V.d) + (V.q)^2 - m * V.V = 0, <= subtracted right side
195 // which we can then solve using the quadratic equation.
196
197 const VectorT3<T> V = ray.point() - apex_;
198 const VectorT3<T>& d = ray.direction();
199 const VectorT3<T>& q = axis_;
200 const T& m = cosSquaredHalfApexAngle_;
201
202 const T d_dot_q = d * q;
203 const T d_dot_d = d.sqr();
204 const T V_dot_q = V * q;
205 const T V_dot_d = V * d;
206 const T V_dot_V = V.sqr();
207
208 T a = d_dot_q * d_dot_q - m * d_dot_d;
209 T b = T(2.0) * (V_dot_q * d_dot_q - m * V_dot_d);
210 T c = V_dot_q * V_dot_q - m * V_dot_V;
211
212 // Normalize the quadratic before solving.
213 const T magnitude = std::max(std::max(NumericT<T>::abs(a), NumericT<T>::abs(b)), NumericT<T>::abs(c));
214 if (NumericT<T>::isNotEqualEps(magnitude))
215 {
216 a /= magnitude;
217 b /= magnitude;
218 c /= magnitude;
219 }
220
221 T minDistance = T(-1.0);
222 T maxDistance = T(-1.0);
223
224 // Check the corner case of a linear equation.
226 {
228 {
229 minDistance = -c / b;
230 maxDistance = minDistance;
231 }
232 }
233 else if (EquationT<T>::solveQuadratic(a, b, c, minDistance, maxDistance))
234 {
235 if (minDistance > maxDistance)
236 {
237 std::swap(minDistance, maxDistance);
238 }
239 }
240
241 // If the minimum distance is negative, either the ray origin is inside the cone, or the ray does
242 // not intersect with the cone.
243 if (minDistance < T(0.0)) // use <= to disallow points exactly on the surface
244 {
245 return false;
246 }
247
248 point = ray.point(minDistance);
249
250 const T minIntersectionDistanceAlongAxis = (point - apex_) * axis_; // signed distance of point projected onto cone's axis
251
252 bool intersectionIsValid = minIntersectionDistanceAlongAxis >= minSignedDistanceAlongAxis_ && minIntersectionDistanceAlongAxis <= maxSignedDistanceAlongAxis_;
253
254 // We also have to check the case that the first intersection point actually exits the cone.
255 // In this case, the ray origin is inside the infinite cone and may or may not be inside the
256 // truncated cone, itself.
257 // \ /
258 // \ O / <- ray origin
259 // \| /
260 // A / <- first intersection (exit)
261 // |\/
262 // |/\
263 // B \ <- second intersection (entrance)
264 // /| \
265 // / | \
266 // / V \
267 //
268 // In this case, we'll return the second intersection point; this can be detected by checking
269 // whether there is a sign flip of the projected signed distance along the cone's axis between
270 // points A and B in the figure above. Note that we'll only return true, however, if point A is
271 // not also on the surface of the truncated cone (otherwise, B is "occluded").
272
273 if (maxDistance > minDistance)
274 {
275 const VectorT3<T> maxPoint = ray.point(maxDistance);
276 const T maxIntersectionDistanceAlongAxis = (maxPoint - apex_) * axis_;
277
278 if (NumericT<T>::sign(minIntersectionDistanceAlongAxis) != NumericT<T>::sign(maxIntersectionDistanceAlongAxis))
279 {
280 point = maxPoint;
281 intersectionIsValid = !intersectionIsValid && maxIntersectionDistanceAlongAxis >= minSignedDistanceAlongAxis_ && maxIntersectionDistanceAlongAxis <= maxSignedDistanceAlongAxis_;
282 }
283 }
284
285 return intersectionIsValid;
286}
287
288template <typename T>
289inline bool ConeT3<T>::isValid() const
290{
291 return cosSquaredHalfApexAngle_ > T(0.0) && maxSignedDistanceAlongAxis_ > minSignedDistanceAlongAxis_ && NumericT<T>::isEqual(axis_.sqr(), T(1.0));
292}
293
294} // namespace Ocean
295
296#endif // META_OCEAN_MATH_CONE_3_H
This class implements a (possibly truncated) 3D cone.
Definition Cone3.h:59
T cosSquaredHalfApexAngle_
Cosine-squared of half of the cone's apex angle.
Definition Cone3.h:130
bool isValid() const
Returns whether this cone is valid.
Definition Cone3.h:289
T minSignedDistanceAlongAxis_
Minimum signed truncation distance along the cone's axis.
Definition Cone3.h:133
T maxSignedDistanceAlongAxis_
Maximum signed truncation distance along the cone's axis.
Definition Cone3.h:136
ConeT3()=default
Creates an invalid cone.
T apexAngle() const
Returns the angle made between diametrically opposite points on the cone and the apex.
Definition Cone3.h:165
VectorT3< T > apex_
Cone tip.
Definition Cone3.h:124
const VectorT3< T > & axis() const
Returns the unit-length axis of the cone.
Definition Cone3.h:159
VectorT3< T > axis_
Cone axis, a unit vector.
Definition Cone3.h:127
const VectorT3< T > & apex() const
Returns the tip of the cone.
Definition Cone3.h:153
const T & maxSignedDistanceAlongAxis() const
Returns the maximum signed truncation distance along the cone's axis.
Definition Cone3.h:172
const T & minSignedDistanceAlongAxis() const
Returns the minimum signed truncation distance along the cone's axis.
Definition Cone3.h:178
bool nearestIntersection(const LineT3< T > &ray, VectorT3< T > &point) const
Returns the closest point of intersection of a ray with the outer surface of the cone,...
Definition Cone3.h:184
This class provides several functions to solve equations with different degree using floating point v...
Definition Equation.h:53
This class implements an infinite line in 3D space.
Definition Line3.h:68
bool isValid() const
Returns whether this line has valid parameters.
Definition Line3.h:301
const VectorT3< T > & direction() const
Returns the direction of the line.
Definition Line3.h:282
const VectorT3< T > & point() const
Returns a point on the line.
Definition Line3.h:269
This class provides basic numeric functionalities.
Definition Numeric.h:57
static constexpr T sign(const T &value)
Returns the sign of a given value by either returning -1, 0, or +1.
Definition Numeric.h:3256
static bool isEqual(const T first, const T second)
Returns whether two values are equal up to a small epsilon.
Definition Numeric.h:2386
static T acos(const T value)
Returns the arccosine of a given value.
Definition Numeric.h:2907
This class implements a vector with three elements.
Definition Vector3.h:97
T sqr() const
Returns the square of the vector length.
Definition Vector3.h:682
unsigned int sqr(const char value)
Returns the square value of a given value.
Definition base/Utilities.h:1029
ConeT3< Scalar > Cone3
Definition of the Cone3 object, depending on the OCEAN_MATH_USE_SINGLE_PRECISION either with single o...
Definition Cone3.h:30
float Scalar
Definition of a scalar type.
Definition Math.h:129
std::vector< Cone3 > Cones3
Definition of a vector holding Cone3 objects.
Definition Cone3.h:51
ConeT3< double > ConeD3
Definition of a 3D cone with double values.
Definition Cone3.h:37
ConeT3< float > ConeF3
Definition of a 3D cone with float values.
Definition Cone3.h:44
The namespace covering the entire Ocean framework.
Definition Accessor.h:15