Module audiocraft.models.audiogen

Main model for using AudioGen. This will combine all the required components and provide easy access to the generation API.

Classes

class AudioGen (name: str, compression_model: CompressionModel, lm: LMModel, max_duration: Optional[float] = None)

AudioGen main model with convenient generation API.

Args

name : str
name of the model.
compression_model : CompressionModel
Compression model used to map audio to invertible discrete representations.
lm : LMModel
Language model over discrete representations.
max_duration : float, optional
maximum duration the model can produce, otherwise, inferred from the training params.
Expand source code
class AudioGen(BaseGenModel):
    """AudioGen main model with convenient generation API.

    Args:
        name (str): name of the model.
        compression_model (CompressionModel): Compression model
            used to map audio to invertible discrete representations.
        lm (LMModel): Language model over discrete representations.
        max_duration (float, optional): maximum duration the model can produce,
            otherwise, inferred from the training params.
    """
    def __init__(self, name: str, compression_model: CompressionModel, lm: LMModel,
                 max_duration: tp.Optional[float] = None):
        super().__init__(name, compression_model, lm, max_duration)
        self.set_generation_params(duration=5)  # default duration

    @staticmethod
    def get_pretrained(name: str = 'facebook/audiogen-medium', device=None):
        """Return pretrained model, we provide a single model for now:
        - facebook/audiogen-medium (1.5B), text to sound,
          # see: https://huggingface.co/facebook/audiogen-medium
        """
        if device is None:
            if torch.cuda.device_count():
                device = 'cuda'
            else:
                device = 'cpu'

        if name == 'debug':
            # used only for unit tests
            compression_model = get_debug_compression_model(device, sample_rate=16000)
            lm = get_debug_lm_model(device)
            return AudioGen(name, compression_model, lm, max_duration=10)

        compression_model = load_compression_model(name, device=device)
        lm = load_lm_model(name, device=device)
        assert 'self_wav' not in lm.condition_provider.conditioners, \
            "AudioGen do not support waveform conditioning for now"
        return AudioGen(name, compression_model, lm)

    def set_generation_params(self, use_sampling: bool = True, top_k: int = 250,
                              top_p: float = 0.0, temperature: float = 1.0,
                              duration: float = 10.0, cfg_coef: float = 3.0,
                              two_step_cfg: bool = False, extend_stride: float = 2):
        """Set the generation parameters for AudioGen.

        Args:
            use_sampling (bool, optional): Use sampling if True, else do argmax decoding. Defaults to True.
            top_k (int, optional): top_k used for sampling. Defaults to 250.
            top_p (float, optional): top_p used for sampling, when set to 0 top_k is used. Defaults to 0.0.
            temperature (float, optional): Softmax temperature parameter. Defaults to 1.0.
            duration (float, optional): Duration of the generated waveform. Defaults to 10.0.
            cfg_coef (float, optional): Coefficient used for classifier free guidance. Defaults to 3.0.
            two_step_cfg (bool, optional): If True, performs 2 forward for Classifier Free Guidance,
                instead of batching together the two. This has some impact on how things
                are padded but seems to have little impact in practice.
            extend_stride: when doing extended generation (i.e. more than 10 seconds), by how much
                should we extend the audio each time. Larger values will mean less context is
                preserved, and shorter value will require extra computations.
        """
        assert extend_stride < self.max_duration, "Cannot stride by more than max generation duration."
        self.extend_stride = extend_stride
        self.duration = duration
        self.generation_params = {
            'use_sampling': use_sampling,
            'temp': temperature,
            'top_k': top_k,
            'top_p': top_p,
            'cfg_coef': cfg_coef,
            'two_step_cfg': two_step_cfg,
        }

Ancestors

Static methods

def get_pretrained(name: str = 'facebook/audiogen-medium', device=None)

Return pretrained model, we provide a single model for now: - facebook/audiogen-medium (1.5B), text to sound, # see: https://huggingface.co/facebook/audiogen-medium

Methods

def set_generation_params(self, use_sampling: bool = True, top_k: int = 250, top_p: float = 0.0, temperature: float = 1.0, duration: float = 10.0, cfg_coef: float = 3.0, two_step_cfg: bool = False, extend_stride: float = 2)

Set the generation parameters for AudioGen.

Args

use_sampling : bool, optional
Use sampling if True, else do argmax decoding. Defaults to True.
top_k : int, optional
top_k used for sampling. Defaults to 250.
top_p : float, optional
top_p used for sampling, when set to 0 top_k is used. Defaults to 0.0.
temperature : float, optional
Softmax temperature parameter. Defaults to 1.0.
duration : float, optional
Duration of the generated waveform. Defaults to 10.0.
cfg_coef : float, optional
Coefficient used for classifier free guidance. Defaults to 3.0.
two_step_cfg : bool, optional
If True, performs 2 forward for Classifier Free Guidance, instead of batching together the two. This has some impact on how things are padded but seems to have little impact in practice.
extend_stride
when doing extended generation (i.e. more than 10 seconds), by how much should we extend the audio each time. Larger values will mean less context is preserved, and shorter value will require extra computations.

Inherited members