Module audiocraft.models.encodec
Compression models or wrapper around existing models. Also defines the main interface that a model must follow to be usable as an audio tokenizer.
Classes
class CompressionModel (*args, **kwargs)
-
Expand source code
class CompressionModel(ABC, nn.Module): """Base API for all compression models that aim at being used as audio tokenizers with a language model. """ @abstractmethod def forward(self, x: torch.Tensor) -> qt.QuantizedResult: ... @abstractmethod def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: """See `EncodecModel.encode`.""" ... @abstractmethod def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): """See `EncodecModel.decode`.""" ... @abstractmethod def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" ... @property @abstractmethod def channels(self) -> int: ... @property @abstractmethod def frame_rate(self) -> float: ... @property @abstractmethod def sample_rate(self) -> int: ... @property @abstractmethod def cardinality(self) -> int: ... @property @abstractmethod def num_codebooks(self) -> int: ... @property @abstractmethod def total_codebooks(self) -> int: ... @abstractmethod def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer.""" ... @staticmethod def get_pretrained( name: str, device: tp.Union[torch.device, str] = 'cpu' ) -> 'CompressionModel': """Instantiate a CompressionModel from a given pretrained model. Args: name (Path or str): name of the pretrained model. See after. device (torch.device or str): Device on which the model is loaded. Pretrained models: - dac_44khz (https://github.com/descriptinc/descript-audio-codec) - dac_24khz (same) - facebook/encodec_24khz (https://huggingface.co/facebook/encodec_24khz) - facebook/encodec_32khz (https://huggingface.co/facebook/encodec_32khz) - your own model on Hugging Face. Export instructions to come... """ from . import builders, loaders model: CompressionModel if name in ['dac_44khz', 'dac_24khz']: model_type = name.split('_')[1] logger.info("Getting pretrained compression model from DAC %s", model_type) model = DAC(model_type) elif name in ['debug_compression_model']: logger.info("Getting pretrained compression model for debug") model = builders.get_debug_compression_model() elif Path(name).exists(): # We assume here if the path exists that it is in fact an AC checkpoint # that was exported using `audiocraft.utils.export` functions. model = loaders.load_compression_model(name, device=device) else: logger.info("Getting pretrained compression model from HF %s", name) hf_model = HFEncodecModel.from_pretrained(name) model = HFEncodecCompressionModel(hf_model).to(device) return model.to(device).eval()
Base API for all compression models that aim at being used as audio tokenizers with a language model.
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Ancestors
- abc.ABC
- torch.nn.modules.module.Module
Subclasses
Class variables
var call_super_init : bool
var dump_patches : bool
var training : bool
Static methods
def get_pretrained(name: str, device: torch.device | str = 'cpu') ‑> CompressionModel
-
Expand source code
@staticmethod def get_pretrained( name: str, device: tp.Union[torch.device, str] = 'cpu' ) -> 'CompressionModel': """Instantiate a CompressionModel from a given pretrained model. Args: name (Path or str): name of the pretrained model. See after. device (torch.device or str): Device on which the model is loaded. Pretrained models: - dac_44khz (https://github.com/descriptinc/descript-audio-codec) - dac_24khz (same) - facebook/encodec_24khz (https://huggingface.co/facebook/encodec_24khz) - facebook/encodec_32khz (https://huggingface.co/facebook/encodec_32khz) - your own model on Hugging Face. Export instructions to come... """ from . import builders, loaders model: CompressionModel if name in ['dac_44khz', 'dac_24khz']: model_type = name.split('_')[1] logger.info("Getting pretrained compression model from DAC %s", model_type) model = DAC(model_type) elif name in ['debug_compression_model']: logger.info("Getting pretrained compression model for debug") model = builders.get_debug_compression_model() elif Path(name).exists(): # We assume here if the path exists that it is in fact an AC checkpoint # that was exported using `audiocraft.utils.export` functions. model = loaders.load_compression_model(name, device=device) else: logger.info("Getting pretrained compression model from HF %s", name) hf_model = HFEncodecModel.from_pretrained(name) model = HFEncodecCompressionModel(hf_model).to(device) return model.to(device).eval()
Instantiate a CompressionModel from a given pretrained model.
Args
name
:Path
orstr
- name of the pretrained model. See after.
device
:torch.device
orstr
- Device on which the model is loaded.
Pretrained models: - dac_44khz (https://github.com/descriptinc/descript-audio-codec) - dac_24khz (same) - facebook/encodec_24khz (https://huggingface.co/facebook/encodec_24khz) - facebook/encodec_32khz (https://huggingface.co/facebook/encodec_32khz) - your own model on Hugging Face. Export instructions to come…
Instance variables
prop cardinality : int
-
Expand source code
@property @abstractmethod def cardinality(self) -> int: ...
prop channels : int
-
Expand source code
@property @abstractmethod def channels(self) -> int: ...
prop frame_rate : float
-
Expand source code
@property @abstractmethod def frame_rate(self) -> float: ...
prop num_codebooks : int
-
Expand source code
@property @abstractmethod def num_codebooks(self) -> int: ...
prop sample_rate : int
-
Expand source code
@property @abstractmethod def sample_rate(self) -> int: ...
prop total_codebooks : int
-
Expand source code
@property @abstractmethod def total_codebooks(self) -> int: ...
Methods
def decode(self, codes: torch.Tensor, scale: torch.Tensor | None = None)
-
Expand source code
@abstractmethod def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): """See `EncodecModel.decode`.""" ...
def decode_latent(self, codes: torch.Tensor)
-
Expand source code
@abstractmethod def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" ...
Decode from the discrete codes to continuous latent space.
def encode(self, x: torch.Tensor) ‑> Tuple[torch.Tensor, torch.Tensor | None]
-
Expand source code
@abstractmethod def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: """See `EncodecModel.encode`.""" ...
def forward(self, x: torch.Tensor) ‑> QuantizedResult
-
Expand source code
@abstractmethod def forward(self, x: torch.Tensor) -> qt.QuantizedResult: ...
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them. def set_num_codebooks(self, n: int)
-
Expand source code
@abstractmethod def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer.""" ...
Set the active number of codebooks used by the quantizer.
class DAC (model_type: str = '44khz')
-
Expand source code
class DAC(CompressionModel): def __init__(self, model_type: str = "44khz"): super().__init__() try: import dac.utils except ImportError: raise RuntimeError("Could not import dac, make sure it is installed, " "please run `pip install descript-audio-codec`") self.model = dac.utils.load_model(model_type=model_type) self.n_quantizers = self.total_codebooks self.model.eval() def forward(self, x: torch.Tensor) -> qt.QuantizedResult: # We don't support training with this. raise NotImplementedError("Forward and training with DAC not supported.") def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: codes = self.model.encode(x, self.n_quantizers)[1] return codes[:, :self.n_quantizers], None def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): assert scale is None z_q = self.decode_latent(codes) return self.model.decode(z_q) def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" return self.model.quantizer.from_codes(codes)[0] @property def channels(self) -> int: return 1 @property def frame_rate(self) -> float: return self.model.sample_rate / self.model.hop_length @property def sample_rate(self) -> int: return self.model.sample_rate @property def cardinality(self) -> int: return self.model.codebook_size @property def num_codebooks(self) -> int: return self.n_quantizers @property def total_codebooks(self) -> int: return self.model.n_codebooks def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer. """ assert n >= 1 assert n <= self.total_codebooks self.n_quantizers = n
Base API for all compression models that aim at being used as audio tokenizers with a language model.
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Ancestors
- CompressionModel
- abc.ABC
- torch.nn.modules.module.Module
Class variables
var call_super_init : bool
var dump_patches : bool
var training : bool
Instance variables
prop cardinality : int
-
Expand source code
@property def cardinality(self) -> int: return self.model.codebook_size
prop channels : int
-
Expand source code
@property def channels(self) -> int: return 1
prop frame_rate : float
-
Expand source code
@property def frame_rate(self) -> float: return self.model.sample_rate / self.model.hop_length
prop num_codebooks : int
-
Expand source code
@property def num_codebooks(self) -> int: return self.n_quantizers
prop sample_rate : int
-
Expand source code
@property def sample_rate(self) -> int: return self.model.sample_rate
prop total_codebooks : int
-
Expand source code
@property def total_codebooks(self) -> int: return self.model.n_codebooks
Inherited members
class EncodecModel (encoder: torch.nn.modules.module.Module,
decoder: torch.nn.modules.module.Module,
quantizer: BaseQuantizer,
frame_rate: int,
sample_rate: int,
channels: int,
causal: bool = False,
renormalize: bool = False)-
Expand source code
class EncodecModel(CompressionModel): """Encodec model operating on the raw waveform. Args: encoder (nn.Module): Encoder network. decoder (nn.Module): Decoder network. quantizer (qt.BaseQuantizer): Quantizer network. frame_rate (int): Frame rate for the latent representation. sample_rate (int): Audio sample rate. channels (int): Number of audio channels. causal (bool): Whether to use a causal version of the model. renormalize (bool): Whether to renormalize the audio before running the model. """ # we need assignment to override the property in the abstract class, # I couldn't find a better way... frame_rate: float = 0 sample_rate: int = 0 channels: int = 0 def __init__(self, encoder: nn.Module, decoder: nn.Module, quantizer: qt.BaseQuantizer, frame_rate: int, sample_rate: int, channels: int, causal: bool = False, renormalize: bool = False): super().__init__() self.encoder = encoder self.decoder = decoder self.quantizer = quantizer self.frame_rate = frame_rate self.sample_rate = sample_rate self.channels = channels self.renormalize = renormalize self.causal = causal if self.causal: # we force disabling here to avoid handling linear overlap of segments # as supported in original EnCodec codebase. assert not self.renormalize, 'Causal model does not support renormalize' @property def total_codebooks(self): """Total number of quantizer codebooks available.""" return self.quantizer.total_codebooks @property def num_codebooks(self): """Active number of codebooks used by the quantizer.""" return self.quantizer.num_codebooks def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer.""" self.quantizer.set_num_codebooks(n) @property def cardinality(self): """Cardinality of each codebook.""" return self.quantizer.bins def preprocess(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: scale: tp.Optional[torch.Tensor] if self.renormalize: mono = x.mean(dim=1, keepdim=True) volume = mono.pow(2).mean(dim=2, keepdim=True).sqrt() scale = 1e-8 + volume x = x / scale scale = scale.view(-1, 1) else: scale = None return x, scale def postprocess(self, x: torch.Tensor, scale: tp.Optional[torch.Tensor] = None) -> torch.Tensor: if scale is not None: assert self.renormalize x = x * scale.view(-1, 1, 1) return x def forward(self, x: torch.Tensor) -> qt.QuantizedResult: assert x.dim() == 3 length = x.shape[-1] x, scale = self.preprocess(x) emb = self.encoder(x) q_res = self.quantizer(emb, self.frame_rate) out = self.decoder(q_res.x) # remove extra padding added by the encoder and decoder assert out.shape[-1] >= length, (out.shape[-1], length) out = out[..., :length] q_res.x = self.postprocess(out, scale) return q_res def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: """Encode the given input tensor to quantized representation along with scale parameter. Args: x (torch.Tensor): Float tensor of shape [B, C, T] Returns: codes, scale (tuple of torch.Tensor, torch.Tensor): Tuple composed of: codes: a float tensor of shape [B, K, T] with K the number of codebooks used and T the timestep. scale: a float tensor containing the scale for audio renormalization. """ assert x.dim() == 3 x, scale = self.preprocess(x) emb = self.encoder(x) codes = self.quantizer.encode(emb) return codes, scale def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): """Decode the given codes to a reconstructed representation, using the scale to perform audio denormalization if needed. Args: codes (torch.Tensor): Int tensor of shape [B, K, T] scale (torch.Tensor, optional): Float tensor containing the scale value. Returns: out (torch.Tensor): Float tensor of shape [B, C, T], the reconstructed audio. """ emb = self.decode_latent(codes) out = self.decoder(emb) out = self.postprocess(out, scale) # out contains extra padding added by the encoder and decoder return out def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" return self.quantizer.decode(codes)
Encodec model operating on the raw waveform.
Args
encoder
:nn.Module
- Encoder network.
decoder
:nn.Module
- Decoder network.
quantizer
:qt.BaseQuantizer
- Quantizer network.
frame_rate
:int
- Frame rate for the latent representation.
sample_rate
:int
- Audio sample rate.
channels
:int
- Number of audio channels.
causal
:bool
- Whether to use a causal version of the model.
renormalize
:bool
- Whether to renormalize the audio before running the model.
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Ancestors
- CompressionModel
- abc.ABC
- torch.nn.modules.module.Module
Class variables
var channels : int
var frame_rate : float
var sample_rate : int
Instance variables
prop cardinality
-
Expand source code
@property def cardinality(self): """Cardinality of each codebook.""" return self.quantizer.bins
Cardinality of each codebook.
prop num_codebooks
-
Expand source code
@property def num_codebooks(self): """Active number of codebooks used by the quantizer.""" return self.quantizer.num_codebooks
Active number of codebooks used by the quantizer.
prop total_codebooks
-
Expand source code
@property def total_codebooks(self): """Total number of quantizer codebooks available.""" return self.quantizer.total_codebooks
Total number of quantizer codebooks available.
Methods
def decode(self, codes: torch.Tensor, scale: torch.Tensor | None = None)
-
Expand source code
def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): """Decode the given codes to a reconstructed representation, using the scale to perform audio denormalization if needed. Args: codes (torch.Tensor): Int tensor of shape [B, K, T] scale (torch.Tensor, optional): Float tensor containing the scale value. Returns: out (torch.Tensor): Float tensor of shape [B, C, T], the reconstructed audio. """ emb = self.decode_latent(codes) out = self.decoder(emb) out = self.postprocess(out, scale) # out contains extra padding added by the encoder and decoder return out
Decode the given codes to a reconstructed representation, using the scale to perform audio denormalization if needed.
Args
codes
:torch.Tensor
- Int tensor of shape [B, K, T]
scale
:torch.Tensor
, optional- Float tensor containing the scale value.
Returns
out (torch.Tensor): Float tensor of shape [B, C, T], the reconstructed audio.
def encode(self, x: torch.Tensor) ‑> Tuple[torch.Tensor, torch.Tensor | None]
-
Expand source code
def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: """Encode the given input tensor to quantized representation along with scale parameter. Args: x (torch.Tensor): Float tensor of shape [B, C, T] Returns: codes, scale (tuple of torch.Tensor, torch.Tensor): Tuple composed of: codes: a float tensor of shape [B, K, T] with K the number of codebooks used and T the timestep. scale: a float tensor containing the scale for audio renormalization. """ assert x.dim() == 3 x, scale = self.preprocess(x) emb = self.encoder(x) codes = self.quantizer.encode(emb) return codes, scale
Encode the given input tensor to quantized representation along with scale parameter.
Args
x
:torch.Tensor
- Float tensor of shape [B, C, T]
Returns
- codes, scale (tuple of torch.Tensor, torch.Tensor): Tuple composed of:
codes
- a float tensor of shape [B, K, T] with K the number of codebooks used and T the timestep. scale: a float tensor containing the scale for audio renormalization.
def postprocess(self, x: torch.Tensor, scale: torch.Tensor | None = None) ‑> torch.Tensor
-
Expand source code
def postprocess(self, x: torch.Tensor, scale: tp.Optional[torch.Tensor] = None) -> torch.Tensor: if scale is not None: assert self.renormalize x = x * scale.view(-1, 1, 1) return x
def preprocess(self, x: torch.Tensor) ‑> Tuple[torch.Tensor, torch.Tensor | None]
-
Expand source code
def preprocess(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: scale: tp.Optional[torch.Tensor] if self.renormalize: mono = x.mean(dim=1, keepdim=True) volume = mono.pow(2).mean(dim=2, keepdim=True).sqrt() scale = 1e-8 + volume x = x / scale scale = scale.view(-1, 1) else: scale = None return x, scale
Inherited members
class HFEncodecCompressionModel (model: transformers.models.encodec.modeling_encodec.EncodecModel)
-
Expand source code
class HFEncodecCompressionModel(CompressionModel): """Wrapper around HuggingFace Encodec. """ def __init__(self, model: HFEncodecModel): super().__init__() self.model = model bws = self.model.config.target_bandwidths num_codebooks = [ bw * 1000 / (self.frame_rate * math.log2(self.cardinality)) for bw in bws ] deltas = [nc - int(nc) for nc in num_codebooks] # Checking we didn't do some bad maths and we indeed have integers! assert all(deltas) <= 1e-3, deltas self.possible_num_codebooks = [int(nc) for nc in num_codebooks] self.set_num_codebooks(max(self.possible_num_codebooks)) def forward(self, x: torch.Tensor) -> qt.QuantizedResult: # We don't support training with this. raise NotImplementedError("Forward and training with HF EncodecModel not supported.") def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: bandwidth_index = self.possible_num_codebooks.index(self.num_codebooks) bandwidth = self.model.config.target_bandwidths[bandwidth_index] res = self.model.encode(x, None, bandwidth) assert len(res[0]) == 1 assert len(res[1]) == 1 return res[0][0], res[1][0] def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): if scale is None: scales = [None] # type: ignore else: scales = scale # type: ignore res = self.model.decode(codes[None], scales) return res[0] def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" return self.model.quantizer.decode(codes.transpose(0, 1)) @property def channels(self) -> int: return self.model.config.audio_channels @property def frame_rate(self) -> float: hop_length = int(np.prod(self.model.config.upsampling_ratios)) return self.sample_rate / hop_length @property def sample_rate(self) -> int: return self.model.config.sampling_rate @property def cardinality(self) -> int: return self.model.config.codebook_size @property def num_codebooks(self) -> int: return self._num_codebooks @property def total_codebooks(self) -> int: return max(self.possible_num_codebooks) def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer. """ if n not in self.possible_num_codebooks: raise ValueError(f"Allowed values for num codebooks: {self.possible_num_codebooks}") self._num_codebooks = n
Wrapper around HuggingFace Encodec.
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Ancestors
- CompressionModel
- abc.ABC
- torch.nn.modules.module.Module
Class variables
var call_super_init : bool
var dump_patches : bool
var training : bool
Instance variables
prop cardinality : int
-
Expand source code
@property def cardinality(self) -> int: return self.model.config.codebook_size
prop channels : int
-
Expand source code
@property def channels(self) -> int: return self.model.config.audio_channels
prop frame_rate : float
-
Expand source code
@property def frame_rate(self) -> float: hop_length = int(np.prod(self.model.config.upsampling_ratios)) return self.sample_rate / hop_length
prop num_codebooks : int
-
Expand source code
@property def num_codebooks(self) -> int: return self._num_codebooks
prop sample_rate : int
-
Expand source code
@property def sample_rate(self) -> int: return self.model.config.sampling_rate
prop total_codebooks : int
-
Expand source code
@property def total_codebooks(self) -> int: return max(self.possible_num_codebooks)
Inherited members
class InterleaveStereoCompressionModel (model: CompressionModel,
per_timestep: bool = False)-
Expand source code
class InterleaveStereoCompressionModel(CompressionModel): """Wraps a CompressionModel to support stereo inputs. The wrapped model will be applied independently to the left and right channels, and both codebooks will be interleaved. If the wrapped model returns a representation `[B, K ,T]` per channel, then the output will be `[B, K * 2, T]` or `[B, K, T * 2]` depending on `per_timestep`. Args: model (CompressionModel): Compression model to wrap. per_timestep (bool): Whether to interleave on the timestep dimension or on the codebooks dimension. """ def __init__(self, model: CompressionModel, per_timestep: bool = False): super().__init__() self.model = model self.per_timestep = per_timestep assert self.model.channels == 1, "Wrapped model is expected to be for monophonic audio" @property def total_codebooks(self): return self.model.total_codebooks @property def num_codebooks(self): """Active number of codebooks used by the quantizer. ..Warning:: this reports the number of codebooks after the interleaving of the codebooks! """ return self.model.num_codebooks if self.per_timestep else self.model.num_codebooks * 2 def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer. ..Warning:: this sets the number of codebooks before the interleaving! """ self.model.set_num_codebooks(n) @property def num_virtual_steps(self) -> float: """Return the number of virtual steps, e.g. one real step will be split into that many steps. """ return 2 if self.per_timestep else 1 @property def frame_rate(self) -> float: return self.model.frame_rate * self.num_virtual_steps @property def sample_rate(self) -> int: return self.model.sample_rate @property def channels(self) -> int: return 2 @property def cardinality(self): """Cardinality of each codebook. """ return self.model.cardinality def forward(self, x: torch.Tensor) -> qt.QuantizedResult: raise NotImplementedError("Not supported, use encode and decode.") def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: B, C, T = x.shape assert C == self.channels, f"Expecting stereo audio but audio num channels is {C}" indices_c0, scales_c0 = self.model.encode(x[:, 0, ...].unsqueeze(1)) indices_c1, scales_c1 = self.model.encode(x[:, 1, ...].unsqueeze(1)) indices = torch.stack([indices_c0, indices_c1], dim=0) scales: tp.Optional[torch.Tensor] = None if scales_c0 is not None and scales_c1 is not None: scales = torch.stack([scales_c0, scales_c1], dim=1) if self.per_timestep: indices = rearrange(indices, 'c b k t -> b k (t c)', c=2) else: indices = rearrange(indices, 'c b k t -> b (k c) t', c=2) return (indices, scales) def get_left_right_codes(self, codes: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]: if self.per_timestep: codes = rearrange(codes, 'b k (t c) -> c b k t', c=2) else: codes = rearrange(codes, 'b (k c) t -> c b k t', c=2) return codes[0], codes[1] def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): B, K, T = codes.shape assert T % self.num_virtual_steps == 0, "Provided codes' number of timesteps does not match" assert K == self.num_codebooks, "Provided codes' number of codebooks does not match" scale_c0, scale_c1 = None, None if scale is not None: assert scale.size(0) == B and scale.size(1) == 2, f"Scale has unexpected shape: {scale.shape}" scale_c0 = scale[0, ...] scale_c1 = scale[1, ...] codes_c0, codes_c1 = self.get_left_right_codes(codes) audio_c0 = self.model.decode(codes_c0, scale_c0) audio_c1 = self.model.decode(codes_c1, scale_c1) return torch.cat([audio_c0, audio_c1], dim=1) def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" raise NotImplementedError("Not supported by interleaved stereo wrapped models.")
Wraps a CompressionModel to support stereo inputs. The wrapped model will be applied independently to the left and right channels, and both codebooks will be interleaved. If the wrapped model returns a representation
[B, K ,T]
per channel, then the output will be[B, K * 2, T]
or[B, K, T * 2]
depending onper_timestep
.Args
model
:CompressionModel
- Compression model to wrap.
per_timestep
:bool
- Whether to interleave on the timestep dimension or on the codebooks dimension.
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Ancestors
- CompressionModel
- abc.ABC
- torch.nn.modules.module.Module
Class variables
var call_super_init : bool
var dump_patches : bool
var training : bool
Instance variables
prop cardinality
-
Expand source code
@property def cardinality(self): """Cardinality of each codebook. """ return self.model.cardinality
Cardinality of each codebook.
prop channels : int
-
Expand source code
@property def channels(self) -> int: return 2
prop frame_rate : float
-
Expand source code
@property def frame_rate(self) -> float: return self.model.frame_rate * self.num_virtual_steps
prop num_codebooks
-
Expand source code
@property def num_codebooks(self): """Active number of codebooks used by the quantizer. ..Warning:: this reports the number of codebooks after the interleaving of the codebooks! """ return self.model.num_codebooks if self.per_timestep else self.model.num_codebooks * 2
Active number of codebooks used by the quantizer.
Warning: this reports the number of codebooks after the interleaving
of the codebooks!
prop num_virtual_steps : float
-
Expand source code
@property def num_virtual_steps(self) -> float: """Return the number of virtual steps, e.g. one real step will be split into that many steps. """ return 2 if self.per_timestep else 1
Return the number of virtual steps, e.g. one real step will be split into that many steps.
prop sample_rate : int
-
Expand source code
@property def sample_rate(self) -> int: return self.model.sample_rate
prop total_codebooks
-
Expand source code
@property def total_codebooks(self): return self.model.total_codebooks
Methods
def get_left_right_codes(self, codes: torch.Tensor) ‑> Tuple[torch.Tensor, torch.Tensor]
-
Expand source code
def get_left_right_codes(self, codes: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]: if self.per_timestep: codes = rearrange(codes, 'b k (t c) -> c b k t', c=2) else: codes = rearrange(codes, 'b (k c) t -> c b k t', c=2) return codes[0], codes[1]
def set_num_codebooks(self, n: int)
-
Expand source code
def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer. ..Warning:: this sets the number of codebooks before the interleaving! """ self.model.set_num_codebooks(n)
Set the active number of codebooks used by the quantizer.
Warning: this sets the number of codebooks before the interleaving!
Inherited members