Shortcuts

Source code for xformers.ops.fmha

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

from typing import Any, List, Optional, Sequence, Tuple, Type, Union, cast

import torch

from . import (
    attn_bias,
    ck,
    ck_decoder,
    ck_splitk,
    cutlass,
    flash,
    flash3,
    triton_splitk,
)
from .attn_bias import (
    VARLEN_BIASES,
    AttentionBias,
    BlockDiagonalMask,
    LowerTriangularMask,
)
from .common import (
    AttentionBwOpBase,
    AttentionFwOpBase,
    AttentionOp,
    AttentionOpBase,
    Context,
    Gradients,
    Inputs,
    bmk2bmhk,
)
from .dispatch import (
    _dispatch_bw,
    _dispatch_fw,
    _ensure_op_supports_or_raise,
    _get_use_fa3,
    _set_use_fa3,
)

MemoryEfficientAttentionCutlassOp = (cutlass.FwOp, cutlass.BwOp)
MemoryEfficientAttentionCutlassFwdFlashBwOp = (cutlass.FwOp, flash.BwOp)
MemoryEfficientAttentionFlashAttentionOp = (flash.FwOp, flash.BwOp)
MemoryEfficientAttentionCkOp = (ck.FwOp, ck.BwOp)
MemoryEfficientAttentionCkDecoderOp = (ck_decoder.FwOp, ck.BwOp)
MemoryEfficientAttentionSplitKCkOp = (ck_splitk.FwOp, ck.BwOp)


def _deserialize_bias(attn_bias_ctx, attn_bias_tensor: Optional[torch.Tensor]) -> Any:
    if attn_bias_tensor is None:
        return attn_bias_ctx
    return attn_bias_tensor


# Note: `torch.compile` only allows custom autograd functions
# to accept a subset of types. Therefore we serialize `op` objects
# to `str` before entering the function, and unserialize them inside.
# See also: https://github.com/pytorch/pytorch/issues/118395
_OPS_LOOKUP = {
    flash.FwOp.NAME: flash.FwOp,
    flash.BwOp.NAME: flash.BwOp,
}


def _serialize_op(op):
    if op is not None and op.NAME in _OPS_LOOKUP:
        return op.NAME
    return op


def _unserialize_op(op):
    if isinstance(op, str):
        return _OPS_LOOKUP[op]
    return op


class _fMHA(torch.autograd.Function):
    @staticmethod
    # type: ignore
    def forward(ctx, op_fw, op_bw, *args: Any) -> Any:
        inp = Inputs(*args)

        op_fw = _unserialize_op(op_fw)
        op_bw = _unserialize_op(op_bw)

        out, op_ctx = _memory_efficient_attention_forward_requires_grad(
            inp=inp, op=op_fw
        )

        # Saving attn_bias is a bit complicated, as the
        # torch part should go in `save_for_backward`
        if isinstance(inp.attn_bias, torch.Tensor):
            attn_bias_tensor = inp.attn_bias
            attn_bias_ctx = None
        else:
            attn_bias_tensor = None
            attn_bias_ctx = inp.attn_bias

        ctx.save_for_backward(
            inp.query,
            inp.key,
            inp.value,
            op_ctx.out,
            op_ctx.lse,
        )
        ctx.rng_state = op_ctx.rng_state
        ctx.attn_bias_tensor = attn_bias_tensor
        if op_ctx.op_bw is not None:
            if op_bw is not None and op_bw is not op_ctx.op_bw:
                raise ValueError(
                    f"Specified op_bw={op_bw.NAME}, but forward op "
                    f"can only run with op_bw={op_ctx.op_bw.NAME}. Please set op_bw=None."
                )
            op_bw = op_ctx.op_bw
        if (
            op_bw is not None
            and isinstance(inp.attn_bias, VARLEN_BIASES)
            and inp.attn_bias.q_seqinfo.seqstart.shape[0] > 2
            and op_bw.VARLEN_LSE_PACKED != op_fw.VARLEN_LSE_PACKED
        ):
            raise ValueError(
                f"Specified op_bw={op_bw.NAME} is not compatible with the "
                f"op_fw={op_fw.NAME}, because they use different format of logsumexp. "
                f"NOTE: This is new with xFormers 0.0.28"
            )
        if op_bw is None and (
            inp.query.requires_grad or inp.key.requires_grad or inp.value.requires_grad
        ):
            varlen_lse_packed = _detect_lse_packed_or_raise(op_ctx.lse, inp)
            if varlen_lse_packed is not None and op_fw is not None:
                assert (
                    op_fw.VARLEN_LSE_PACKED == varlen_lse_packed
                ), f"{op_fw.NAME}: wrong value for `VARLEN_LSE_PACKED` ?"
            # NOTE: We need to check tensor strides to decide which operator we run in the BW pass.
            # Unfortunately, PyTorch only allows to call this function during the FW pass, so
            # we decide the operator to use now.
            op_bw = _dispatch_bw(inp, varlen_lse_packed=varlen_lse_packed)
        ctx.op_fw = op_fw
        ctx.op_bw = op_bw
        ctx.p = inp.p
        # This allows to create gradients from a single storage,
        # to avoid a "cat" in the BW pass.
        # The heuristic is approximative, but:
        # (1) It's not a big issue to create a shared storage
        # (2) The heuristic needs to pass `torch.compile`
        #  (this is also why we run it in the FW pass, the BW pass is stricter)
        ctx.qkv_share_storage = (
            inp.query.shape[0] == inp.key.shape[0]
            and inp.query.shape[-1] == inp.value.shape[-1]
            and inp.query.stride(-2)
            == (inp.key.shape[-1] + inp.query.shape[-1] + inp.value.shape[-1])
        )

        ctx.scale = inp.scale
        ctx.attn_bias_ctx = attn_bias_ctx
        ctx.n_args = len(args)
        return out, op_ctx.lse

    @staticmethod
    @torch.autograd.function.once_differentiable
    def backward(ctx, grad, grad_lse):
        # Re-create context
        query, key, value, out, lse = ctx.saved_tensors
        attn_bias_tensor = ctx.attn_bias_tensor
        rng_state = ctx.rng_state
        inp = Inputs(
            query=query,
            key=key,
            value=value,
            attn_bias=_deserialize_bias(ctx.attn_bias_ctx, attn_bias_tensor),
            p=ctx.p,
            scale=ctx.scale,
        )
        op_ctx = Context(
            lse=lse,
            out=out,
            rng_state=rng_state,
        )
        grads = _memory_efficient_attention_backward(
            ctx=op_ctx,
            inp=inp,
            grad=grad,
            op=ctx.op_bw,
            _skip_op_checks=True,
        )
        return (None, None, grads.dq, grads.dk, grads.dv, grads.db) + (None,) * (
            ctx.n_args - 2
        )


[docs]def memory_efficient_attention( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_bias: Optional[Union[torch.Tensor, AttentionBias]] = None, p: float = 0.0, scale: Optional[float] = None, *, op: Optional[AttentionOp] = None, output_dtype: Optional[torch.dtype] = None, ) -> torch.Tensor: """Implements the memory-efficient attention mechanism following `"Self-Attention Does Not Need O(n^2) Memory" <http://arxiv.org/abs/2112.05682>`_. :Inputs shape: - Input tensors must be in format ``[B, M, H, K]``, where B is the batch size, M \ the sequence length, H the number of heads, and K the embeding size per head - If inputs have dimension 3, it is assumed that the dimensions are ``[B, M, K]`` and ``H=1`` - Inputs can also be of dimension 5 with GQA - see note below - Inputs can be non-contiguous - we only require the last dimension's stride to be 1 :Equivalent pytorch code: .. code-block:: python scale = 1.0 / query.shape[-1] ** 0.5 query = query * scale query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) attn = query @ key.transpose(-2, -1) if attn_bias is not None: attn = attn + attn_bias attn = attn.softmax(-1) attn = F.dropout(attn, p) attn = attn @ value return attn.transpose(1, 2).contiguous() :Examples: .. code-block:: python import xformers.ops as xops # Compute regular attention y = xops.memory_efficient_attention(q, k, v) # With a dropout of 0.2 y = xops.memory_efficient_attention(q, k, v, p=0.2) # Causal attention y = xops.memory_efficient_attention( q, k, v, attn_bias=xops.LowerTriangularMask() ) :Supported hardware: NVIDIA GPUs with compute capability above 6.0 (P100+), datatype ``f16``, ``bf16`` and ``f32``. :EXPERIMENTAL: Using with Multi Query Attention (MQA) and Grouped Query Attention (GQA): MQA/GQA is an experimental feature supported only for the forward pass. If you have 16 heads in query, and 2 in key/value, you can provide 5-dim tensors in the ``[B, M, G, H, K]`` format, where ``G`` is the number of head groups (here 2), and ``H`` is the number of heads per group (8 in the example). Please note that xFormers will not automatically broadcast the inputs, so you will need to broadcast it manually before calling `memory_efficient_attention`. :GQA/MQA example: .. code-block:: python import torch import xformers.ops as xops B, M, K = 3, 32, 128 kwargs = dict(device="cuda", dtype=torch.float16) q = torch.randn([B, M, 8, K], **kwargs) k = torch.randn([B, M, 2, K], **kwargs) v = torch.randn([B, M, 2, K], **kwargs) out_gqa = xops.memory_efficient_attention( q.reshape([B, M, 2, 4, K]), k.reshape([B, M, 2, 1, K]).expand([B, M, 2, 4, K]), v.reshape([B, M, 2, 1, K]).expand([B, M, 2, 4, K]), ) Raises: NotImplementedError: if there is no operator available to compute the MHA ValueError: if inputs are invalid :parameter query: Tensor of shape ``[B, Mq, H, K]`` :parameter key: Tensor of shape ``[B, Mkv, H, K]`` :parameter value: Tensor of shape ``[B, Mkv, H, Kv]`` :parameter attn_bias: Bias to apply to the attention matrix - defaults to no masking. \ For common biases implemented efficiently in xFormers, see :attr:`xformers.ops.fmha.attn_bias.AttentionBias`. \ This can also be a :attr:`torch.Tensor` for an arbitrary mask (slower). :parameter p: Dropout probability. Disabled if set to ``0.0`` :parameter scale: Scaling factor for ``Q @ K.transpose()``. If set to ``None``, the default \ scale (q.shape[-1]**-0.5) will be used. :parameter op: The operators to use - see :attr:`xformers.ops.AttentionOpBase`. \ If set to ``None`` (recommended), xFormers \ will dispatch to the best available operator, depending on the inputs \ and options. :return: multi-head attention Tensor with shape ``[B, Mq, H, Kv]`` """ return _memory_efficient_attention( Inputs( query=query, key=key, value=value, p=p, attn_bias=attn_bias, scale=scale, output_dtype=output_dtype, ), op=op, )
torch.library.define( "xformer::memory_efficient_attention_forward", "(Tensor q, Tensor k, Tensor v, Tensor? b = None, float? p = 0.0, float? scale = None) -> Tensor", ) @torch.library.impl("xformer::memory_efficient_attention_forward", "Meta") def memory_efficient_attention_forward_meta(q, k, v): return q.new_empty(q.shape) # torch.compile has issue when tracing through op dispatch and ensure_op_support # so provide a wrapper to register it as a custom torch library op. @torch.library.impl("xformer::memory_efficient_attention_forward", "CUDA") def memory_efficient_attention_forward_torch_wrapper( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_bias: Optional[Union[torch.Tensor, AttentionBias]] = None, p: float = 0.0, scale: Optional[float] = None, ) -> torch.Tensor: """ This provides a torch-compilable wrapper op to memory_efficient_attention_forward in certain special cases. Note that the following are not supported - `op` input (?) - certain attn_bias types (?) - output_dtype - K != Kv """ return memory_efficient_attention_forward( query, key, value, attn_bias, p, scale, )
[docs]def memory_efficient_attention_forward( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_bias: Optional[Union[torch.Tensor, AttentionBias]] = None, p: float = 0.0, scale: Optional[float] = None, *, op: Optional[Type[AttentionFwOpBase]] = None, output_dtype: Optional[torch.dtype] = None, ) -> torch.Tensor: """ Calculates the forward pass of :attr:`xformers.ops.memory_efficient_attention`. """ return _memory_efficient_attention_forward( Inputs( query=query, key=key, value=value, p=p, attn_bias=attn_bias, scale=scale, output_dtype=output_dtype, ), op=op, )
[docs]def memory_efficient_attention_forward_requires_grad( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_bias: Optional[Union[torch.Tensor, AttentionBias]] = None, p: float = 0.0, scale: Optional[float] = None, *, op: Optional[Type[AttentionFwOpBase]] = None, output_dtype: Optional[torch.dtype] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Returns a tuple (output, lse), where `lse` can be used to compute the backward pass later. See :attr:`xformers.ops.memory_efficient_attention` for an explanation of the arguments See :attr:`xformers.ops.memory_efficient_attention_backward` for running the backward pass """ if p != 0.0: raise NotImplementedError( "dropout is not supported on the non-autograd API." " If you want to use dropout, please call `memory_efficient_attention` directly" ) out, ctx = _memory_efficient_attention_forward_requires_grad( Inputs( query=query, key=key, value=value, p=p, attn_bias=attn_bias, scale=scale, output_dtype=output_dtype, ), op=op, ) return out, ctx.lse
[docs]def memory_efficient_attention_backward( grad: torch.Tensor, output: torch.Tensor, lse: torch.Tensor, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_bias: Optional[Union[torch.Tensor, AttentionBias]] = None, p: float = 0.0, scale: Optional[float] = None, *, op: Optional[Type[AttentionBwOpBase]] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Computes the gradient of the attention. Returns a tuple (dq, dk, dv) See :attr:`xformers.ops.memory_efficient_attention` for an explanation of the arguments. `lse` is the tensor returned by :attr:`xformers.ops.memory_efficient_attention_forward_requires_grad` """ if p != 0.0: raise NotImplementedError( "dropout is not supported on the non-autograd API." " If you want to use dropout, please call `memory_efficient_attention` directly" ) gradients = _memory_efficient_attention_backward( Context(out=output, lse=lse), Inputs( query=query, key=key, value=value, p=p, attn_bias=attn_bias, scale=scale ), grad, op=op, ) return (gradients.dq, gradients.dk, gradients.dv)
def _memory_efficient_attention( inp: Inputs, op: Optional[AttentionOp] = None ) -> torch.Tensor: # fast-path that doesn't require computing the logsumexp for backward computation if all(x.requires_grad is False for x in [inp.query, inp.key, inp.value]): return _memory_efficient_attention_forward( inp, op=op[0] if op is not None else None ) output_shape = inp.normalize_bmhk() op_fw = _serialize_op(op[0] if op is not None else None) op_bw = _serialize_op(op[1] if op is not None else None) return _fMHA.apply( op_fw, op_bw, inp.query, inp.key, inp.value, inp.attn_bias, inp.p, inp.scale )[0].reshape(output_shape) def _memory_efficient_attention_forward( inp: Inputs, op: Optional[Type[AttentionFwOpBase]] ) -> torch.Tensor: inp.validate_inputs() output_shape = inp.normalize_bmhk() if op is None: op = _dispatch_fw(inp, False) else: _ensure_op_supports_or_raise(ValueError, "memory_efficient_attention", op, inp) out, *_ = op.apply(inp, needs_gradient=False) return out.reshape(output_shape) def _memory_efficient_attention_forward_requires_grad( inp: Inputs, op: Optional[Type[AttentionFwOpBase]] ) -> Tuple[torch.Tensor, Context]: inp.validate_inputs() output_shape = inp.normalize_bmhk() if op is None: op = _dispatch_fw(inp, True) else: _ensure_op_supports_or_raise(ValueError, "memory_efficient_attention", op, inp) out = op.apply(inp, needs_gradient=True) assert out[1] is not None return (out[0].reshape(output_shape), out[1]) def _detect_lse_packed_or_raise(lse: torch.Tensor, inp: Inputs) -> Optional[bool]: """ Detects the LSE format if we're in a varlen case. Returns `None` if the format is not relevant (eg not varlen) Raises an exception if the `lse` has the wrong shape """ shape_mismatch_err = ( "Input tensors have incompatible shapes.\n" f" lse.shape : {lse.shape}\n" f" query.shape : {inp.query.shape}\n" f" attn_bias : {type(inp.attn_bias)}" ) # 1. Check ndim & head dimensions # In any case, LSE should be [*, *GH] if lse.ndim != (inp.query.ndim - 1) or lse.shape[1:-1] != inp.query.shape[2:-1]: raise ValueError(shape_mismatch_err) lse_bm = [lse.shape[0], lse.shape[-1]] lse_packed_shape = [inp.query.shape[0], inp.query.shape[1]] lse_packed = lse_bm[0] == lse_packed_shape[0] and lse_bm >= lse_packed_shape # 2. Check correctness for varlen biases with query.shape = [1, M, *GH, K] # Either [1, *GH, M] (packed) # Or [num_seq, *GH, Mq] .. with `Mq >= max_q` (padded) if isinstance(inp.attn_bias, VARLEN_BIASES): si = inp.attn_bias.q_seqinfo lse_padded_shape = [si.seqstart.shape[0] - 1, si.max_seqlen] lse_padded = lse_bm[0] == lse_padded_shape[0] and lse_bm >= lse_padded_shape if lse_packed and lse_padded: return None elif lse_packed: return True elif lse_padded: return False raise ValueError(shape_mismatch_err) # 3. For non-varlen, shape must be [B, *GH] with query.shape=[B, M, *GH, K] if not lse_packed: raise ValueError(shape_mismatch_err) return None def _memory_efficient_attention_backward( ctx: Context, inp: Inputs, grad: torch.Tensor, op: Optional[Type[AttentionBwOpBase]], *, _skip_op_checks: bool = False, ) -> Gradients: """Warning: grad/ctx.out is potentially in BMK format""" inp.validate_inputs() if grad.ndim != inp.query.ndim or grad.ndim != ctx.out.ndim: raise ValueError( "All tensors should be either in BMK (ndim=3) or BMHK (ndim=4) format. \n" f"grad.shape : {grad.shape} \n" f"out.shape : {ctx.out.shape} \n" f"query.shape: {inp.query.shape}" ) shape_dq, shape_dk, shape_dv = tuple( x.shape for x in (inp.query, inp.key, inp.value) ) inp.normalize_bmhk() varlen_lse_packed = _detect_lse_packed_or_raise(ctx.lse, inp) grad = bmk2bmhk(grad, 1) ctx.out = bmk2bmhk(ctx.out, 1) if op is None: op = _dispatch_bw(inp, varlen_lse_packed=varlen_lse_packed) elif not _skip_op_checks: _ensure_op_supports_or_raise( ValueError, "memory_efficient_attention_backward", op, inp ) if varlen_lse_packed is not None and varlen_lse_packed != op.VARLEN_LSE_PACKED: raise ValueError( f"Wrong LSE format for {op.NAME} in variable seqlen case. " f"Double-check that the BW operator {op.NAME} is compatible " f"with the operator used in the FW pass." ) grads = op.apply(ctx, inp, grad) grads.dq = grads.dq.reshape(shape_dq) grads.dk = grads.dk.reshape(shape_dk) grads.dv = grads.dv.reshape(shape_dv) return grads
[docs]def memory_efficient_attention_partial( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_bias: Optional[Union[torch.Tensor, AttentionBias]] = None, p: float = 0.0, scale: Optional[float] = None, *, op: Optional[Union[AttentionOp, Type[AttentionFwOpBase]]] = None, output_dtype: Optional[torch.dtype] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Returns a tuple (output, lse), where `output` is the attention in the style of memory_efficient_attention, and `lse` is extra data, a log-sum-exp. The outputs of calls to this with the same query and separate keys and values can be merged with merge_attentions to obtain the attention of the queries against the disjoint union of the keys and values. Warning: The backward pass of this function is quite restricted. In particular we assume that in the forward pass the outputs were only used in merge_attention calculations, and that LSEs weren't used anywhere except in merge attentions. """ if p != 0.0: raise NotImplementedError("dropout is not supported.") fwop: Optional[Type[AttentionFwOpBase]] = op[0] if isinstance(op, tuple) else op inp = Inputs( query=query, key=key, value=value, p=p, attn_bias=attn_bias, scale=scale, output_dtype=output_dtype, is_partial=True, ) is_grad = torch.is_grad_enabled() and any( x.requires_grad for x in [query, key, value] ) if not is_grad: out, ctx = _memory_efficient_attention_forward_requires_grad( inp, op=fwop, ) return out, ctx.lse if query.ndim == 5: raise ValueError("gradients not supported for 5D tensors") if isinstance(op, tuple): op_fw = _serialize_op(op[0]) op_bw = _serialize_op(op[1]) elif op is None: op_fw = op_bw = None else: op_fw = _serialize_op(op) op_bw = None return _fMHA.apply( op_fw, op_bw, inp.query, inp.key, inp.value, inp.attn_bias, inp.p, inp.scale, inp.output_dtype, inp.is_partial, )
[docs]def merge_attentions( attn_split: Union[torch.Tensor, Sequence[torch.Tensor]], lse_split: Union[torch.Tensor, Sequence[torch.Tensor]], write_lse: bool = True, output_dtype: Optional[torch.dtype] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ Combine attention output computed on different parts of K/V for the same query to get attention on the whole K/V. See https://arxiv.org/abs/2402.05099 The result is equal to Out_full = (Out1 * exp(LSE1) + Out2 * exp(LSE2) + ...) / (exp(LSE1) + exp(LSE2) + ...) LSE_full = log(exp(LSE1) + exp(LSE2) + ...) Args: attn_split: attention outputs for chunks, either as a list of tensors of shapes [B, M, G, H, Kq] or [B, M, H, Kq] or as a single tensor of shape [num_chunks, B, M, G, H, Kq] or [num_chunks, B, M, H, Kq] lse_split: LSE for chunks, either as a list of tensors of shapes [B, G, H, M] or [B, H, M] or as a single tensor of shape [num_chunks, B, G, H, M] or [num_chunks, B, H, M] write_lse: whether to output LSE output_dtype: dtype of attn_out Returns: attn_out: [B, M, G, H, Kq] or [B, M, H, Kq] lse_out: [B, G, H, M] or [B, H, M] if write_lse or None otherwise """ attn_is_concat = isinstance(attn_split, torch.Tensor) lse_is_concat = isinstance(lse_split, torch.Tensor) attn_requires_grad = ( attn_split.requires_grad # type: ignore if attn_is_concat else any(x.requires_grad for x in attn_split) ) lse_requires_grad = ( lse_split.requires_grad # type: ignore if lse_is_concat else any(x.requires_grad for x in lse_split) ) requires_grad = torch.is_grad_enabled() and ( attn_requires_grad or lse_requires_grad ) if requires_grad and not write_lse: raise ValueError("write_lse should be true if inputs require gradients.") concat_path = attn_is_concat and lse_is_concat and not requires_grad if concat_path: attn_split = cast(torch.Tensor, attn_split) lse_split = cast(torch.Tensor, lse_split) if attn_split.ndim != lse_split.ndim + 1: raise ValueError( f"Incompatible input shapes: {attn_split.shape=}, {lse_split.shape=}" ) is_bmhk = attn_split.ndim == 5 if is_bmhk: attn_split = attn_split.unsqueeze(3) lse_split = lse_split.unsqueeze(2) num_chunks, B, M, G, H, Kq = attn_split.shape num_chunks1, B1, G1, H1, M1 = lse_split.shape if B != B1 or G != G1 or H != H1 or num_chunks != num_chunks1 or M != M: raise ValueError( f"Incompatible input shapes: {attn_split.shape=} {lse_split.shape=} " f"{B}/{B1}, {G}/{G1}, {H}/{H1}, {num_chunks}/{num_chunks1}, {M}/{M}" ) attn_split = attn_split.permute(1, 3, 4, 0, 2, 5) lse_split = lse_split.permute(1, 2, 3, 0, 4) device = attn_split.device attn_dtype = attn_split.dtype lse_dtype = lse_split.dtype else: if attn_is_concat: attn_split = attn_split.unbind(0) # type: ignore if lse_is_concat: lse_split = lse_split.unbind(0) # type: ignore num_chunks = len(attn_split) if len(lse_split) != num_chunks: raise ValueError( f"Incompatible number of LSE and attention chunks: {len(attn_split)=}, {len(lse_split)=}" ) attn_unsqueezed = [] lse_unsqueezed = [] is_bmhk = False for i in range(num_chunks): if attn_split[i].ndim != lse_split[i].ndim + 1: raise ValueError( f"Incompatible input shapes for chunk {i}: {attn_split[i].shape=}, {lse_split[i].shape=}" ) is_bmhk = attn_split[i].ndim == 4 if is_bmhk: attn_unsqueezed.append(attn_split[i].unsqueeze(2)) lse_unsqueezed.append(lse_split[i].unsqueeze(1)) else: attn_unsqueezed.append(attn_split[i]) lse_unsqueezed.append(lse_split[i]) attn_split, lse_split = attn_unsqueezed, lse_unsqueezed B, M, G, H, Kq = attn_split[0].shape B1, G1, H1, M1 = lse_split[0].shape if B != B1 or G != G1 or H != H1 or M != M: raise ValueError( f"Incompatible input shapes: {attn_split[0].shape=}, {lse_split[0].shape=} " f"{B}/{B1}, {G}/{G1}, {H}/{H1}, {M}/{M}" ) for i in range(num_chunks): if attn_split[i].shape != (B, M, G, H, Kq): raise ValueError( f"Incompatible input shapes for attention chunk {i}: " f"{attn_split[i].shape=}, {(B, M, G, H, Kq)=}" ) if lse_split[i].shape != (B, G, H, M): raise ValueError( f"Incompatible input shapes for LSE chunk {i}: " f"{lse_split[i].shape=}, {(B, G, H, M)=}" ) attn_split[i] = attn_split[i].permute(0, 2, 3, 1, 4) # to (B, G, H, M, Kq) device = attn_split[0].device attn_dtype = attn_split[0].dtype lse_dtype = lse_split[0].dtype attn_out = torch.empty( B, M, G, H, Kq, device=device, dtype=output_dtype or attn_dtype, requires_grad=requires_grad, ) if write_lse: lse_out = torch.empty( B, G, H, M, device=device, dtype=lse_dtype, requires_grad=requires_grad ) else: lse_out = None if concat_path: triton_splitk.merge_attentions(attn_out, lse_out, attn_split, lse_split) # type: ignore else: attn_out, lse_out = _MergeAttentions.apply(attn_out, lse_out, *attn_split, *lse_split) # type: ignore if is_bmhk: attn_out = attn_out[:, :, 0] if lse_out is not None: lse_out = lse_out[:, 0] return attn_out, lse_out
class _MergeAttentions(torch.autograd.Function): @staticmethod # type: ignore def forward( ctx, attn_out: torch.Tensor, lse_out: torch.Tensor, *inputs: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: num_chunks = len(inputs) // 2 attn_split, lse_split = inputs[:num_chunks], inputs[num_chunks:] triton_splitk.merge_attentions_varargs(attn_out, lse_out, attn_split, lse_split) ctx.save_for_backward( attn_out, lse_out, *inputs, ) return attn_out, lse_out @staticmethod # type: ignore def backward( ctx, grad_attn: torch.Tensor, grad_lse: torch.Tensor ) -> Tuple[Optional[torch.Tensor], ...]: out, lse, *inputs = ctx.saved_tensors num_chunks = len(inputs) // 2 attn_split, lse_split = inputs[:num_chunks], inputs[num_chunks:] dattn, dlse = triton_splitk.merge_attentions_varargs_backward( attn_split, lse_split, out, lse, grad_attn, grad_lse, ) ret = [None, None] + dattn + dlse return tuple(ret) ALL_FW_OPS: List[Type[AttentionFwOpBase]] = [ cutlass.FwOp if torch.version.cuda else ck.FwOp, flash.FwOp, flash3.FwOp, triton_splitk.FwOp, ] ALL_BW_OPS: List[Type[AttentionBwOpBase]] = [ cutlass.BwOp if torch.version.cuda else ck.BwOp, flash.BwOp, flash3.BwOp, ] __all__ = [ "AttentionBias", "AttentionOp", "AttentionOpBase", "LowerTriangularMask", "MemoryEfficientAttentionCutlassFwdFlashBwOp", "MemoryEfficientAttentionCutlassOp", "MemoryEfficientAttentionFlashAttentionOp", "memory_efficient_attention", "MemoryEfficientAttentionCkOp", "MemoryEfficientAttentionCkDecoderOp", "ALL_FW_OPS", "ALL_BW_OPS", "attn_bias", "_get_use_fa3", "_set_use_fa3", "BlockDiagonalMask", ]