
Hardware-Rasterized Ray-Based Gaussian Splatting

Samuel Rota Bulò, Nemanja Bartolovic, Lorenzo Porzi, Peter Kontschieder
Meta Reality Labs, Zürich

Abstract

We present a novel, hardware-rasterized rendering ap-
proach for ray-based 3D Gaussian Splatting (RayGS), ob-
taining both fast and high-quality results for novel view syn-
thesis. Our work contains a mathematically rigorous and
geometrically intuitive derivation about how to efficiently
estimate all relevant quantities for rendering RayGS mod-
els, structured with respect to standard hardware rasteriza-
tion shaders. Our solution is the first enabling rendering
RayGS models at sufficiently high frame rates to support
quality-sensitive applications like Virtual and Mixed Real-
ity. Our second contribution enables alias-free rendering
for RayGS, by addressing MIP-related issues arising when
rendering diverging scales during training and testing. We
demonstrate significant performance gains, across different
benchmark scenes, while retaining state-of-the-art appear-
ance quality of RayGS.

1. Introduction

The advent of recently introduced image-based reconstruc-
tion methods like Neural Radiance Fields (NeRFs) [19] and
3D Gaussian Splatting (3DGS) [12] has paved the way for
a new era of photorealistic novel view synthesis in Virtual
and Mixed Reality applications. Radiance fields can capture
subtle nuances of real-world scenes, including fine-grained
texture details, complex lighting phenomena, and transpar-
ent surfaces. In particular, 3DGS has a number of inter-
esting properties including interpretability, flexibility, and
efficiency for both training and real-time rendering.

Once the scene models are reconstructed, fast and real-
time rendering capabilities are required for applications like
novel view synthesis. While the original 3DGS paper is al-
ready significantly faster compared to NeRFs, further works
have addressed improving rendering speed [5, 6, 23]. How-
ever, many of their target applications still center on ren-
dering for 2D consumption or on small (mobile) screens,
which allows for certain glitches in terms of rendering arti-
facts and overall quality. In contrast, we observed that VR
applications set the bar significantly higher when it comes

� https://github.com/facebookresearch/vkraygs

to rendering quality, otherwise breaking the immersion and
thus the overall experience.

A number of works have contributed to further im-
proving 3DGS’ reconstruction quality, e.g., by using a
better densification procedure [2], removing popping ar-
tifacts [26], or leveraging a ray casting based approach
for computing ray-Gaussian intersections [9, 10, 39] rather
than using the originally proposed splatting formulation.
Many of these improvements are complementary in nature,
but particularly ray-tracing based volume rendering of 3D
Gaussians (RayGS) [10] has shown superior quality. The
quality gain is mostly due to eliminating some of the ap-
proximations needed in traditional 3DGS, however, this
comes at increased computational costs making it unsuit-
able for high frame rate applications based on consumer-
grade hardware.

In our work we propose a novel and substantially faster
renderer based on hardware-rasterization, while retaining
the high quality of ray-based Gaussian Splatting. Hard-
ware rasterization pipelines have been successfully demon-
strated for standard 3DGS [30], enabling cross-platform us-
age based on using standard graphics pipeline components.
For standard 3DGS, vertex shaders were used to determine
the support area of each Gaussian primitive by means of
the quad enclosing the minimum area of the corresponding,
projected ellipse on the image plane. The fragment shader
then computes the primitive’s opacity information, given
the positional information computed by the vertex shader.
Providing the analogous quantities for the RayGS case is
non-trivial, and forms the core contribution of our paper.
We propose a solution that yields the smallest enclosing
quads in 3D space, which turns out to be approximately as
fast as the hardware-rasterized variant for standard 3DGS,
while retaining the higher quality of RayGS. We discuss the
challenges of selecting the computationally most efficient
solution out of infinitely many valid ones.

The second contribution of our paper addresses MIP-
related issues in a RayGS formulation. Our solution en-
ables alias-free rendering of images at diverging test and
training scales, preventing undesirable artifacts. For a given
and normalized ray, we marginalize the Gaussian 3D dis-
tribution on a plane orthogonal to the ray and intersecting

https://github.com/facebookresearch/vkraygs

its point of maximum density. This yields a 2D Gaussian
distribution which can be locally smoothed to approximate
the integral over the pixel area, and to further compute the
rendered opacity at each point in the pixel area. Besides the
theoretically correct solution, we derive an approximated
one that can be efficiently integrated into our renderer.

To summarize, our work proposes a mathematically
rigorous and geometrically intuitive derivation for deriv-
ing all quantities required for high-quality and fast, hard-
ware rasterized, ray-based Gaussian Splatting. We addi-
tionally introduce a solution for handling MIP-related is-
sues in RayGS, demonstrated by qualitative and side-by-
side comparisons. Finally, we provide quantitative eval-
uation results, demonstrating that we can retain state-of-
the-art appearance performance of RayGS-based models
while obtaining on average approximately 40× faster ren-
dering performance on scenes from the MipNeRF360 [1]
and Tanks&Temples [13] benchmark datasets.

2. Related Works

3D Gaussian Splatting (3DGS) was initially presented
in [12], and has since become a fundamental tool in Com-
puter Vision and Graphics. Thanks to its speed and ease
of use, 3DGS has been applied to a wide variety of down-
stream tasks, including text-to-3D generation [3, 29, 37],
photo-realistic human avatars [14, 15, 27, 41], dynamic
scene modeling [16, 32, 35], Simultaneous Localization and
Mapping [11, 18, 34, 40], and more [8, 33, 36]. In this sec-
tion, we focus on two areas of research that are most closely
related to our work: re-formulating 3DGS as ray casting,
and improving its rendering performance.

3DGS as ray casting. A few different works [9, 10, 17,
20, 26, 39] have shown that rendering 3D gaussian prim-
itives using ray casting can be a preferable alternative to
splatting. These work concurrently showed that ray-splat
intersections can be calculated efficiently and, importantly,
exactly, as opposed to the approximation introduced by the
original rasterization formulation in [12]. The works in [39]
and [10] steer the training process towards learning 3D rep-
resentations that more accurately follow the real geometry
of the scene, by introducing regularization losses that ex-
ploit the more meaningful depth and normals that can be
computed with the ray-splat intersection formulation. Sim-
ilarly, the works in [26] and [9] exploit ray-splat intersec-
tion to compute per-pixel depth values, that can be used
to locally re-order the splats and avoid “popping” artifacts.
While the previous works implemented ray casting in the
same CUDA software rasterization framework of [12], a
few others [17, 20] exploited Nvidia hardware to imple-
ment 3DGS rendering as a full ray-tracing procedure. While
generally slower than the others, these approaches unlock
an entire new range of possibilities, e.g., physically accu-

rate simulations of reflections and shadows, by tracing light
propagation through a 3DGS scene.

Improving 3DGS performance. One of the main advan-
tages of 3DGS compared to previous photorealistic 3D re-
construction approaches such as Neural Radiance Fields
(NeRF) [19], is its render-time performance. Even when
compared to NeRF approaches specifically tuned for speed
over quality [22], 3DGS can still run up to one order of
magnitude faster. Nonetheless, real-time rendering com-
plex 3DGS scenes using the original CUDA implementa-
tion from [12] can be infeasible when very high output res-
olutions are required, if computational budget is limited,
or both (e.g. on VR headsets). Because of this, optimiz-
ing 3DGS rendering performance has been an active area
of research in the past years, focusing on two main direc-
tions: model pruning and compression [4, 21, 24, 25], and
fine-tuning the rendering logic [5, 6, 30].

In Radsplat [25], Niemeyer et al. propose a strategy
to prune splats that don’t significantly contribute to image
quality, considerably reducing how many need to be ren-
dered and thus increasing speed. Since 3DGS is generally
bottlenecked by GPU memory bandwidth, model compres-
sion can be exploited to both reduce model storage size and
increase rendering speed, e.g. by organizing splat parame-
ters in coherent 2D grids to be compressed using standard
image compression algorithms [21], or by developing spe-
cific parameter quantization approaches [4, 24].

In FlashGS [6], Feng et al. present an in-depth anal-
ysis of the original differentiable 3DGS CUDA renderer,
proposing many small optimizations which together con-
tribute substantial speed improvements, particularly at
training time. The largest increase in rendering perfor-
mance, however, can generally be achieved by abandoning
the CUDA-based software rasterization paradigm (and thus
the ability to differentiate through the renderer) in favour of
hardware rasterization, in a way reminiscent of older works
on rendering quadratic 3D surfaces [28, 31]. To the best of
our knowledge, this approach to 3DGS rendering has not
been formally described in computer vision literature, but
many different HW-rasterization implementations of 3DGS
are available as open source software, such as [5, 30].

3. Preliminaries: Gaussian Splatting

We provide a brief introduction to Gaussian Splat-
ting (GS) [12] and its ray-based variant (RayGS) [39], in-
cluding implementation details of hardware-rasterized GS.

Scene representation. Gaussian Splatting introduces a
scene representation expressed in terms of (3D Gaussian)
primitives S := {(µi, Σi, oi, ξi)}Ni=1, each consisting of a
center µi ∈ R3, a covariance matrix Σi ∈ R3×3, a prior
opacity scalar oi ∈ [0, 1] and a feature vector ξi ∈ Rd

(e.g. RGB color). The covariance matrix Σi is typically

parametrized with a rotation Ri and a positive-definite, diag-
onal matrix Si as follows: Σi := RiS

2
i R
⊤
i . We assume center

and covariance to be expressed in the camera frame.
Scene rendering. Rendering a scene S on a given camera
is formulated as a per-pixel, convex linear combination of
primitives’ features, i.e.

R(x;S) :=
N∑
i=1

ξνi
ωνi(x;S)

i−1∏
j=1

[1− ωνj (x;S)] , (1)

where ν is a permutation of primitives that depends on the
camera pose and camera ray x, typically yielding an as-
cending ordering with respect to depth of the primitive’s
center. The term ωi(x;S) ∈ [0, 1] can be regarded as the
rendered primitive opacity value, which is given by

ωi(x;S) := oi exp

[
−1

2
D(x;µi, Σi)

]
, (2)

where D(x;µi, Σi) is a divergence of x from the primitive.
This divergence takes different forms depending on the type
of model we consider, namely GS or RayGS.
Support of a primitive and its boundary. Given a primi-
tive (µ, Σ, o, ξ), the set of camera rays x for which the ren-
dered opacity as per Eq. (2) is above a predefined, cut-off
probability value pmin is called the support of the primitive.
The support is camera-specific and can be characterized in
terms of D as the set of rays satisfying

D(x;µ, Σ) ≤ κ , (3)

where κ := −2 log
(
pmin
o

)
. Indeed, the relation holds if and

only if ωi(x;S) ≥ pmin. The set of rays for which equal-
ity holds in Eq. (3) forms the boundary of the primitive’s
support. Finally, if κ ≤ 0, the support of the primitive is a
null set and, hence, the primitive can be skipped since it is
not visible given the provided cut-off probability. For this
reason, we assume κ > 0 in the rest of the paper.

3.1. Gaussian Splatting
Let π(x) be the camera projection function mapping a 3D
point in camera space to the corresponding 2D pixel in im-
age space. In GS the divergence is given by

Dgs(x;µ, Σ) := (π(x)− π(µ))⊤Σ
−1

π (π(x)− π(µ)) , (4)

where Σπ := JπΣJ
⊤
π ∈ R2×2 with Jπ ∈ R2×3 being the Ja-

cobian of the projection function π evaluated at µ. This is
the Mahalanobis distance between the pixel corresponding
to x and the 2D Gaussian distribution that is obtained from
the primitive’s 3D Gaussian distribution transformed via a
linerization of π at µ. One advantage of this approxima-
tion is that the support of the primitive spans a 2D ellipse in
pixel-space and can be rasterized in hardware. The disad-
vantage is that the support is misplaced with respect to the
3D Gaussian density, yielding unexpected artifacts, and the
approximation assumes a pinhole camera model.

3.2. Ray-Based Gaussian Splatting
RayGS improves the rendering quality by dropping the ap-
proximation in GS due to the local linearization, which
causes unexpected behavior (see Fig. 5). The idea is to ren-
der a primitive by considering the point of maximum Gaus-
sian density along each camera ray. By doing so, the den-
sity of the rendered primitive behaves as expected, but the
computational cost is higher. The divergence function un-
derlying RayGS takes the following form

Dray(x;µ, Σ) := (τ(x)x− µ)⊤Σ
−1
(τ(x)x− µ) , (5)

where τ(x) := x⊤Σ
−1

µ

x⊤Σ−1x
. Geometrically, τ(x)x is the

point of maximum density along ray x ∈ R3 \ {0}
(see Prop. A.1), and the divergence corresponds to the Ma-
halanobis distance between this point and the primitive’s 3D
Gaussian.
Skipping cases. Primitives for which c2 ≤ κ holds with

c :=
√
µ⊤Σ−1µ (6)

have a support that spans the entire image (see Prop. A.2).
This intuitively happens because the camera is positioned
inside the primitive. For this reason, we skip those cases
and, therefore, we assume c2 > κ in the rest of the section.

3.3. Hardware-Rasterized GS
One advantage of GS over RayGS is the straightforward
mapping of the algorithm onto a traditional hardware-
accelerated rasterization pipeline with programmable ver-
tex and fragment shading stages. The idea is simple. Since
the support of a primitive yields a 2D ellipse on the image
plane, it is possible to enclose it with a quad, i.e. a 4-sided
polygon, spanning a minimum area. The role of the vertex
shader is to compute the positions of the quad vertices and
initialize vertex-specific features that are interpolated and
transformed by the fragment shader to deliver a per-pixel
RGBA color. A standard alpha-blending pipeline configu-
ration combines the RGBA color from multiple pre-sorted
quads to mimic the actual rendering equation in Eq. (1). Be-
low, we review the vertex and fragment shaders and refer the
reader to the code of [30] for more details.
Vertex shader. Given the eigendecomposition, Σπ =
UgsΛgsU

⊤
gs, the vertices of the quad enclosing a primitive’s

support in image-space are given by

Vgs := TgsH(Zgs) , (7)

where Tgs :=
[
UgsΛ

1
2
gs π(µ)

]
∈ R2×3, function H

turns each column of the argument matrix into homo-
geneous coordinates, Zgs :=

√
κO ∈ R2×4 and O :=[

−1 −1 1 1
−1 1 1 −1

]
are the vertices of the canonical quad,

namely a centered 2D square.

Fragment shader. The goal of the fragment shader is to
compute the rendered primitive’s opacity in Eq. (2) by us-
ing hardware interpolation capabilities over vertex-specific
quantities. Here, the relevant part of the opacity compu-
tation is Dgs(x;µ, Σ), which changes over pixels. Given
any ray x intersecting the primitive’s quad, there exist in-
terpolating coefficients α ∈ R4 such that Dgs(x;µ, Σ) =
Dgs(H(Vgsα)). Moreover, for any such α we have that

Dgs(H(Vgsα)) = ∥Zgsα∥2 .

Accordingly, it is sufficient to interpolate Zgs and use a
simple dot product in the fragment shader to compute
Dgs(x;µ, Σ) over the quad area. The resulting quantity is
then fed to a pixel-independent function to get the rendered
opacity as per Eq. (2).

4. Hardware-Rasterized RayGS
In this section, we introduce the main contribution of the
paper, namely showing how hardware rasterization can be
used to efficiently render Gaussian primitives under a ray-
based formulation. This allows to retain the advantage of
GS, i.e. faster rendering, and the better quality of RayGS,
due to the dropped linear approximation.

Thanks to the linear approximation of the projection
function, the support of a primitive in GS spans a 2D el-
lipse on the image plane and an optimal enclosing quad
can be efficiently computed in the same space, as shown
in Sec. 3.3. However, when it comes to RayGS, where we
drop this approximation, the support of primitives can also
span half-hyperbolas making the approximation with quads
on the image plane more complex and less efficient.

To sidestep this limitation, we drop the restriction of
seeking quads on the image plane and approximate the sup-
port of primitives with quads placed directly in 3D space. In
fact, any quad intersecting all camera rays in the support of
a primitive is a valid solution and there are infinitely-many
ones. But, two valid quads do not necessarily share the same
computational efficiency, so making the right choice here
makes the difference.

In this section, we present a solution strategy using quads
lifted in 3D space that can be computed efficiently as we
will show later in the experimental section. Mimicking
Sec. 3.3, we discuss how the vertex and fragment shaders
are implemented in our solution, which are the distinctive
parts of our contribution, while we omit the rest of the
pipeline (e.g. alpha-blending logic), for it is shared with the
GS hardware-rasterized implementation [30].

4.1. Vertex shader
Consider a primitive with center µ and covariance Σ :=
RpS

2R⊤p that factorizes in terms of the scale matrix S and
rotation matrix Rp. For a given camera view, we compute

a quad that encloses the 3D points of maximum Gaussian
density that we find along rays belonging to the boundary
of the primitive’s support, i.e. the points belonging to the
following set (see, Fig. 1a):

E :=
{
τ(x)x : Dray(x;µ, Σ) = κ, x ∈ R3 \ {0}

}
.

Determining such a quad is possible because E forms a 2D
ellipse embedded in 3D space and, hence, is isomorphic to
the unit circle S1. To grasp the geometrical intuition of why
this is the case, we describe how we can map E to S1 and
provide in Fig. 1 a schematic overview.

(a) (b)

(c)

(d)

Figure 1. Schematic overview of the isomorphism between E and
the unit circle S1, shown from the (x, z)-plane perspective.

Isomorphism Φ between E and S1. We start with the prim-
itive in its original space in Fig. 1a. By Prop. A.5 we have
that

e⊤Σ
−1
e = e⊤Σ

−1
µ = c2 − κ , (8)

holds for all e ∈ E with c as defined in Eq. (6). By setting
µ̂ := 1

cS
−1R⊤p µ and ê := 1√

c2−κS
−1R⊤p e, we can rewrite

the right-most equality in Eq. (8) as

ê⊤µ̂ = b :=

√
1− κ

c2
. (9)

The result of this space transformation is shown in Fig. 1b.
Since both ê and µ̂ are points of the unit sphere S2, we have
that all ê satisfying Eq. (9) live on a circle embedded in 3D
space. To make this mapping explicit, we rotate the space
to align µ̂ with the z-axis v =

[
0 0 1

]⊤
. To this end,

Figure 2. Examples of 3D quads obtained by mapping 2D squares
via the isomorphism Φ−1.

we define a rotation matrix Rµ̂←v (see, Appendix A.1) such
that µ̂ = Rµ̂←vv. By setting ē := Rµ̂←vê, we have that

ē⊤v = b . (10)

This transformation is depicted in Fig. 1c. Since ē is still a
vector of the unit sphere S2, and by Eq. (10) its z-coordinate
has to be b, we have that

ē = bH (au) (11)

holds with a :=
√

κ
c2−κ and for a specific element u ∈ S1

of the unit circle, which corresponds to the (x, y)-subvector
of ē normalized to unit length (see Fig. 1d). In summary,
we have described a transformation chain

e ∈ E ⇄ ê ∈ S2 ⇄ ē ∈ S2 ⇄ u ∈ S1

mapping elements of E to the unit circle, which is both lin-
ear and invertible, thus showing that the two sets are iso-
morphic. From this we infer that all points in E actually
live on a 2D ellipse embedded in 3D space and, therefore,
can be enclosed with a quad placed on the same 3D plane
the 2D ellipse belongs to. We denote by Φ the isomorphism
from E to S1. The 3D center of the ellipse spanned by E can
be computed as Φ−1(0), i.e. by back-mapping the center of
the unit disk 0 ∈ R2.

Quad vertices and optimality. Determining the vertices
of a quad enclosing E becomes easy given the mapping
Φ, because it is sufficient to enclose the unit circle S1
with a 2D quad and map it back to 3D space with Φ−1

(see, Fig. 2a). The explicit form of Φ−1 can be obtained
by traversing backwards the transformations from the pre-
vious paragraph, with some terms rearranged:

Φ−1(u) :=
c2 − κ

c
RpSRµ̂←v︸ ︷︷ ︸

=:Q

H(au) . (12)

Unfortunately, there are infinitely-many ways we can ap-
proximate the unit circle with a quad, two examples being
given in Fig. 2, but not all are efficient for the sake of ren-
dering. In particular, their projection on the image plane
can span different area sizes, potentially introducing a waste
of compute on irrelevant pixels. Ideally, we would like to

position the quad in a way to minimize the spanned area
on the image plane, but this requires additional complex-
ity in the way the vertices are computed, to the detriment
of the overall rendering speed. What we found out to be a
good compromise is to position the vertices of the enclos-
ing quad in a way to span the smallest area in 3D space, by
forming a tight rectangle aligned with the 2D ellipse’s axes
(see Fig. 2b). To this end, we identify one vertex of the el-
lipse E , i.e. one of the two endpoints along its major axis,
by localizing it first on the unit circle. This is achieved by
solving the following optimization problem

u1 ∈ argmax
u∈S1

∥Φ−1(u)− Φ−1(0)∥2 , (13)

which finds the point u1 on the unit circle whose counter-
part Φ−1(u) on the ellipse E maximizes the distance to the
ellipse’s center, which can computed as Φ−1(0). By substi-
tuting Eq. (12) into Eq. (13), and dropping constant scalar
factors that do not change the maximizers, the objective
takes a standard quadratic form (see, Appendix A.2):

u1 ∈ argmax
u∈S1

u⊤Bu . (14)

Here, B := Q⊤0:2Q0:2, where Q0:2 ∈ R3×2 denotes Q restricted
to the first two columns. The solution u1 is an eigenvec-
tor of B with maximum eigenvalue, which can be computed
in closed-form for 2 × 2 matrices. Similarly, u0, i.e. the
point corresponding to the minor axis, is an eigenvector of
B with minimum eigenvalue. Since B has only two eigen-
vectors and are mutually orthogonal, u0 can be computed
by simply rotating u1 by 90 degrees anticlockwise. By do-
ing so we ensure to preserve a consistent orientation of the
quad surface. We stack u0 and u1 to form a 2 × 2 matrix
Uray := (u0,u1), which we use to rotate the vertices of the
canonical quad O before mapping it back to 3D space via
Φ−1 (see, Fig. 2). Although this mapping would already
provide a valid 3D quad for rendering, we also scale it by
the factor c2

c2−κ . This scaling operation preserves the sup-
port of camera rays, making the scaled quad equivalent to
the original one from a rendering perspective, but it enables
the computation of vertices in a more efficient and stable
way. In fact, the final set of quad vertices Vray can be com-
puted as follows (see Appendix A.3), mimicking Eq. (7):

Vray := TrayH(Zray) , (15)

where Zray :=
√
κ
b O and Tray :=

[
Q0:2Uray µ

]
.

A note on near plane clipping. The proposed formula-
tion works under the assumption that near plane clipping
is disabled. Indeed, if a quad intersecting the near plane
is clipped, we obtain undesired effects like visible disconti-
nuities (see Fig. 3). Nonetheless, frustum culling of primi-
tives based on a near plane is still applicable without conse-
quences, for the whole quad is removed in that case.

near plane

Figure 3. Undesired effects of near-plane clipping. Sharp discon-
tinuities might be visible if a quad intersects the clipping plane.

4.2. Fragment shader
Our goal is to compute the rendered primitive’s opacity
in Eq. (2) by exploiting hardware interpolation of quanti-
ties specified at the quad’s vertices. Again, the relevant part
of the computation is Dray(x;µ, Σ) since it changes over
pixels. Similarly to GS, we have that for any ray x inter-
secting the primitive’s quad, there exist interpolating coeffi-
cients α ∈ R4 such that Dray(x;µ, Σ) = Dray(Vrayα;µ, Σ).
Moreover, for any such α the following holds (see, Ap-
pendix A.4):

Dray(Vrayα;µ, Σ) =
{
c−2 + ∥Zrayα∥−2

}−1

. (16)

Hence, it is sufficient to interpolate Zray and apply a simple
scalar function to get Dgs(x;µ, Σ) over the quad area. The
resulting quantity is then fed to a pixel-independent func-
tion to get the rendered opacity as per Eq. (2).

5. MIP for RayGS
In this section we focus on MIP-related issues, which
should be addressed to ensure higher-quality renderings in
particular for VR applications, where we are free of moving
in the scene. The problem arises from the fact that when
we render we approximate a pixel with a single camera ray
in the center, instead of considering the whole pixel area.
Imagine to have a primitive that spans less than a pixel when
rendered. If the center of the pixel overlaps with the support
of the primitive, the full pixel will take the primitive’s ren-
dered color. Otherwise it will show the background color.
We would instead expect the pixel color to be the combi-
nation of primitive and background color, depending on the
size of the primitive’s support.

In the context of GS, there have been works suggesting
ways to address MIP issues [38], but to our knowledge no
work has explicitly addressed the matter for RayGS. To fill
this gap, we introduce a novel formulation that can be easily
integrated into our fast renderer. Given a (normalized) ray
x, the idea is to marginalize the Gaussian 3D distribution
on a plane that is orthogonal to x and passing through the
point of maximum density τ(x)x. This yields a 2D Gaus-
sian distribution on the same plane, which can be smoothed

using a properly-sized isotropic 2D Gaussian distribution to
approximate the integral over the pixel area. By applying
this idea, we end up with the following per-primitive distri-
bution over (normalized) camera rays (see, Appendix A.5
for a detailed derivation):

PMIP(x) ∝
τ2(x)√

|Σ̂x|x⊤Σ̂−1

x x
exp

(
−1

2
Dray(x;µ, Σ̂x)

)
,

where Σ̂x := Σ + σ2
xτ(x)

2I is a pixel-dependent 3D co-
variance matrix and σ2

x represents the area of the pixel at
unit distance along the ray, which is in principle also de-
pendent on the ray because the plane we are projecting onto
is not necessarily parallel to the image plane. Akin to MIP-
Splatting [38], we can compute the rendered opacity by con-
sidering the exponential term in Pmip(x) and modulating
the prior opacity so that the total opacity matches the one
of standard RayGS, where the modulating factor is given
by

√
|Σ|c2

|Σ̂x|x⊤Σ̂−1
x x

. The resulting formula is structurally sim-
ilar to the one from [38], differences being that we do not
require separate 2D and 3D filters and the modulation fac-
tor is pixel-dependent. Unfortunately, the latter fact, despite
being theoretically more correct, poses challenges when it
comes to having a fast rasterizer integrating it. For this rea-
son, we introduce the following approximations in our im-
plementation. We start considering σx constant and regard Σ̂
as the resulting pixel-invariant counterpart of Σ̂x. Next, we
assume x⊤Σ̂−1x ≈ ĉ2 := µ⊤Σ̂−1µ. This approximation is
accurate when primitives are sufficiently small to have rays
concentrated around the mean, which accounts for most of
the cases. Conversely, when primitives are sufficiently large
along both (x, y)-directions then the modulation factor is
close to 1 for all x, so the approximation still works. The
cases when the approximation is less accurate are more rare,
i.e. when primitives are thin less than a pixel upon projec-
tion, but sufficiently elongated to span a wide cone of rays.
The final form of our MIP formulation is thus

ωmip(x) ≈ oi

√
|Σ|c2

|Σ̂|ĉ2
exp

(
−1

2
Dray(x;µ, Σ̂)

)
, (17)

which can be efficiently integrated in our fast renderer.

6. Experiments
We have implemented our hardware-rasterized renderer for
RayGS on top of VKGS [30], which is based on Vulkan.
Accordingly, we refer our method to as VKRayGS. How-
ever, other OpenGL implementations are potentially possi-
ble based on what we described in the paper. Our experi-
mental evaluation targets different goals:
Rendering speed. We want to show that our contribu-
tion unlocks significantly higher rendering speed for RayGS

models than the best publicly-available, open-sourced al-
ternative, which at the time of writing is the CUDA-based
renderer from Gaussian Opacity Field (GOF) [39]. More-
over, to put the numbers in the right perspective, we provide
in Appendix B.1 a speed comparison between the original
VKGS implementation of GS and the CUDA-based imple-
mentation of Gaussian Splatting (GS) from INRIA [7], in
its most recent version integrating speed optimizations.

Rendering quality. The way primitives are rendered in our
formulation is mathematically equivalent to [39], but there
are still factors that can influence the final rendering qual-
ity, like differences occurring in the rest of the pipeline (e.g.
how primitives are clipped). For this reason, we report qual-
ity metrics in addition to speed measurements. However,
given that we use models trained with the differentiable ren-
derer from the competitors, it is reasonable to expect a bias
in their favor. Since quality drops that are not directly as-
cribable to our contribution are expected to show up also
when comparing VKGS against its CUDA counterpart, we
decided to include in Appendix B.1 also the latter compari-
son despite not being directly related to our contribution.

6.1. Evaluation Protocol
We evaluate the performance of our renderer on scenes
from two benchmark datasets that have been often used
in the context of novel-view synthesis with GS (see
e.g. [2, 12]), namely MipNerf360 [1] and Tanks and Tem-
ples [13]. Those are real-world captures that span both
indoor and outdoor scenarios. For each scene, every 8th
image is set aside to form a test set, on which three qual-
ity metrics are reported, namely peak signal-to-noise ra-
tio (PSNR), structural similarity (SSIM) and the perceptual
metric from (LPIPS) using VGG. Following the standard
protocol from [1], we evaluate MipNerf360 indoor/outdoor
scenes using the 2×/4× downsampling factors, respec-
tively. Moreover, we use downsampled images provided
by the authors of the dataset. For Tanks&Temples we eval-
uate the results at 2× downsampling factor, akin to previ-
ous methods. The same images used for quality evaluations
are also used to compute the rendering speed in terms of
Frames-Per-Second (FPS). We opted to run experiments on
an RTX2080, which is a mid-range GPU, sufficiently pow-
erful and CUDA-based to run the implementations from the
competitors. Nevertheless, our implementation can run on
any GPU supporting Vulkan and, more in general, enables
implementations in OpenGL, which broadens up the appli-
cability spectrum significantly. All scene models used for
the experiments are either provided by the authors of the
competing methods or, if not available, have been trained
using the code they provide. Finally, the quantitative eval-
uations of our model are run with MIP disabled, because
the scene models from [39] already incorporate an additive
factor on the 3D covariance and are trained without the MIP

Figure 4. Benefits of our MIP formulation for RayGS. Best viewed
with digital zoom. See text for details.

opacity modulation. We nevertheless provide qualitative ex-
amples showing the importance of the MIP formulation.

6.2. Results
Before delving into the results obtained by our fast renderer
against GOF, and following our previous discussion about
quality expectations, we discuss a quantitative comparison
of VKGS against GS. In addition, we provide some qualita-
tive results and discussion about MIP.

GS versus VKGS. In Appendix B.1, we report results ob-
tained by GS versus the Vulkan counterpart VKGS on the
benchmark datasets, which highlight a clear speed advan-
tage of the Vulkan implementation over the CUDA-based
one from GS, being on average 2× faster. Quality met-
rics, instead, are not significantly different, excepting a few
cases. However, the fact that there are differences indi-
cates potential misalignment between the implementations
and the results favor GS because the model has been trained
with the same renderer.

GOF versus VKRayGS. In Tab. 1, we report the results
obtained by our renderer against GOF. We have split the
table into two sections to distinguish scenes from MipN-
erf360 (top) and Tanks&Temples (bottom). For each scene,
we report the size of the model in terms of number of prim-
itives N and report left-to-right speed comparisons in terms
of FPS and quality metrics in terms of PSNR, SSIM and
LPIPS, averaged over all the test views. we observe huge
gains in terms of speed, with an average speed up of 40×,
highlighting the relevance of our contribution, for it un-
locks real-time rendering with the better RayGS models (as
reflected by the overall worse perceptual metrics obtained
with GS in Tab. B.1). If we shift our focus on the qualita-
tive metrics, we observe a slight quality drop with some
cases where our renderer delivers even better perceptual
scores. This drop is motivated by implementation misalign-
ments between GOF and VKRayGS that are not ascribable
to our method, as confirmed by similar, if not larger, gaps

Figure 5. Artifacts one might experience with GS models (top) as opposed to RayGS (bottom), while moving close to objects. Renderings
are from the room scene of MipNeRF360 and obtained with VKGS and our VKRayGS, respectively.

between VKGS and GS (see, Tab. B.1). Besides the quanti-
tative analysis, qualitative comparisons are provided in Ap-
pendix C, where perceptual differences are barely visible.

on RTX2080 FPS ↑ PSNR ↑ SSIM ↑ LPIPS ↓
Scene N GOF VKRayGS GOF VKRayGS GOF VKRayGS GOF VKRayGS

bicycle 5.35M 4 177 25.47 25.31 0.784 0.784 0.206 0.203
bonsai 1.07M 6 341 31.60 31.46 0.937 0.930 0.240 0.204
counter 0.82M 6 292 28.69 28.57 0.901 0.896 0.258 0.230
flowers 3.28M 6 191 21.67 21.61 0.632 0.631 0.309 0.310
garden 4.40M 4 172 27.46 27.34 0.866 0.865 0.122 0.117
kitchen 1.07M 5 242 30.74 30.63 0.915 0.911 0.168 0.153
room 1.09M 5 305 30.81 30.55 0.915 0.906 0.281 0.245
stump 4.97M 6 186 26.96 26.94 0.790 0.792 0.223 0.22
treehill 4.02M 5 184 22.40 22.48 0.638 0.636 0.325 0.326

barn 0.83M 10 312 28.99 28.30 0.892 0.883 0.190 0.192
caterpillar 1.43M 7 247 23.68 23.12 0.820 0.810 0.241 0.246
ignatius 2.60M 7 203 22.76 22.42 0.826 0.815 0.186 0.188

meetingroom 0.95M 7 351 25.50 24.71 0.881 0.867 0.235 0.230
truck 2.14M 7 195 25.80 25.30 0.892 0.881 0.153 0.141

Table 1. Comparison between GOF and VKRayGS on scenes from
MipNeRF360 and Tanks&Temples.

Benefits of MIP. To understand why it is important to ad-
dress MIP-related issues, in particular in real-time viewers,
we provide in Fig. 4 an example from the MipNeRF360 bi-
cycle scene. We show crops of the bike from images ren-
dered by a far away camera. Top-left, we provide the ren-
dering with plain VKRayGS, which exhibits strong aliasing
artifacts. Top-right, we adopt a 4× multi-sampling anti-
aliasing (MSAA) approach, which consists in averaging 4
rays per pixel, but also this solution solves only partially
the issue at a higher computational cost. Bottom-left, we
show renderings from VKRayGS with our MIP formula-
tion, when we set σ2 := 0.1 but neglect the opacity modu-
lation factor. This solution solves the aliasing problem, but
renders primitives unnaturally thick (see e.g. the bike wheel
rays). Finally, bottom-right, we have VKRayGS with the
full MIP formulation, which produces an antialiased output
without artifacts at a negligible computational overhead.

GS versus RayGS. In Fig. 5 we highlight some artifacts
that typically occur when using a GS renderer like VKGS
as opposed to a RayGS one like ours. We show three frames
of a camera that moves along a linear trajectory in the room
scene of MipNeRF360. The camera moves close to objects
in the scene on purpose, as this is typically the setting under
which artifacts occur. On the top row, we present the re-
sults with VKGS, which exhibit spikes inconsistent with the
scene geometry. On the bottom row, we report results ob-
tained with VKRayGS, which despite being RayGS-based
is executed on a GS scene model. As we can see, the ar-
tifacts afflicting the GS renderer are not there. This is be-
cause in RayGS models the rendered opacity is geometri-
cally more consistent as opposed to GS.

7. Conclusions
We have presented a novel approach to rendering ray-based
3D Gaussian Splatting (RayGS) using hardware rasteriza-
tion, achieving both fast and high-quality results for novel
view synthesis. Our method leverages the advantages of
RayGS, which provides superior quality compared to tra-
ditional 3DGS, while obtaining significant rendering speed
gains on all tested scenes. We have demonstrated that our
approach can render high-quality images at frame rates suit-
able for VR and MR applications. Our contributions in-
clude a mathematically rigorous and geometrically intuitive
derivation of how to efficiently estimate all relevant quanti-
ties for rendering of RayGS models, as well as a solution to
MIP-related issues in a RayGS formulation, enabling alias-
free rendering of scenes at diverging test and training scales.

Our work has shown how to significantly speedup
RayGS models at test time, but it would be interesting to
employ hardware rasterization to improve training time as
well. It is not trivial how this can be achieved and we leave
this to future work.

References
[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5470–5479, 2022. 2, 7

[2] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder.
Revising densification in gaussian splatting. In European
Conference on Computer Vision, 2024. 1, 7

[3] Zilong Chen, Feng Wang, and Huaping Liu. Text-to-3d using
gaussian splatting. arXiv preprint arXiv:2309.16585, 2023.
2

[4] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, De-
jia Xu, and Zhangyang Wang. Lightgaussian: Unbounded
3d gaussian compression with 15x reduction and 200+ fps.
arXiv preprint arXiv:2311.17245, 2023. 2

[5] fast-gauss. Fast gaussian rasterization. GitHub, 2024. 1, 2
[6] Guofeng Feng, Siyan Chen, Rong Fu, Zimu Liao, Yi

Wang, Tao Liu, Zhilin Pei, Hengjie Li, Xingcheng Zhang,
and Bo Dai. Flashgs: Efficient 3d gaussian splatting for
large-scale and high-resolution rendering. arXiv preprint
arXiv:2408.07967, 2024. 1, 2

[7] gs-inria. INRIA Gaussian Splatting. https://github.
com/graphdeco-inria/gaussian-splatting,
2024. 7

[8] Antoine Guédon and Vincent Lepetit. Sugar: Surface-
aligned gaussian splatting for efficient 3d mesh recon-
struction and high-quality mesh rendering. arXiv preprint
arXiv:2311.12775, 2023. 2

[9] Florian Hahlbohm, Fabian Friederichs, Tim Weyrich, Li-
nus Franke, Moritz Kappel, Susana Castillo, Marc Stam-
minger, Martin Eisemann, and Marcus Magnor. Efficient
perspective-correct 3d gaussian splatting using hybrid trans-
parency. arXiv preprint arXiv:2410.08129, 2024. 1, 2

[10] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically ac-
curate radiance fields. In ACM SIGGRAPH 2024 Conference
Papers, pages 1–11, 2024. 1, 2

[11] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallab-
hula, Gengshan Yang, Sebastian Scherer, Deva Ramanan,
and Jonathon Luiten. Splatam: Splat, track & map 3d gaus-
sians for dense rgb-d slam. arXiv preprint arXiv:2312.02126,
2023. 2

[12] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 1, 2, 7

[13] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics (ToG), 36
(4):1–13, 2017. 2, 7

[14] Muhammed Kocabas, Jen-Hao Rick Chang, James Gabriel,
Oncel Tuzel, and Anurag Ranjan. Hugs: Human gaussian
splats. arXiv preprint arXiv:2311.17910, 2023. 2

[15] Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, and
Kostas Daniilidis. Gart: Gaussian articulated template mod-
els. arXiv preprint arXiv:2311.16099, 2023. 2

[16] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking
by persistent dynamic view synthesis. arXiv preprint
arXiv:2308.09713, 2023. 2

[17] Alexander Mai, Peter Hedman, George Kopanas, Dor
Verbin, David Futschik, Qiangeng Xu, Falko Kuester, Jon
Barron, and Yinda Zhang. Ever: Exact volumetric ellip-
soid rendering for real-time view synthesis. arXiv preprint
arXiv:2410.01804, 2024. 2

[18] Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and An-
drew J Davison. Gaussian splatting slam. arXiv preprint
arXiv:2312.06741, 2023. 2

[19] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2

[20] Nicolas Moenne-Loccoz, Ashkan Mirzaei, Or Perel, Ric-
cardo de Lutio, Janick Martinez Esturo, Gavriel State, Sanja
Fidler, Nicholas Sharp, and Zan Gojcic. 3D Gaussian Ray
Tracing: Fast tracing of particle scenes. ACM Transactions
on Graphics and SIGGRAPH Asia, 2024. 2

[21] Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and
Peter Eisert. Compact 3d scene representation via self-
organizing gaussian grids. arXiv preprint arXiv:2312.13299,
2023. 2

[22] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022. 2

[23] KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi
Koohpayegani, and Hamed Pirsiavash. Compact3d: Smaller
and faster gaussian splatting with vector quantization. arXiv
preprint arXiv:2311.18159, 2023. 1

[24] Simon Niedermayr, Josef Stumpfegger, and Rüdiger West-
ermann. Compressed 3d gaussian splatting for accelerated
novel view synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10349–10358, 2024. 2

[25] Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakoto-
saona, Michael Oechsle, Daniel Duckworth, Rama Gosula,
Keisuke Tateno, John Bates, Dominik Kaeser, and Federico
Tombari. Radsplat: Radiance field-informed gaussian splat-
ting for robust real-time rendering with 900+ fps. arXiv
preprint arXiv:2403.13806, 2024. 2

[26] Lukas Radl, Michael Steiner, Mathias Parger, Alexan-
der Weinrauch, Bernhard Kerbl, and Markus Steinberger.
Stopthepop: Sorted gaussian splatting for view-consistent
real-time rendering. ACM Transactions on Graphics (TOG),
43(4):1–17, 2024. 1, 2

[27] Shunsuke Saito, Gabriel Schwartz, Tomas Simon, Junxuan
Li, and Giljoo Nam. Relightable gaussian codec avatars.
arXiv preprint arXiv:2312.03704, 2023. 2

[28] Christian Sigg, Tim Weyrich, Mario Botsch, and Markus H
Gross. Gpu-based ray-casting of quadratic surfaces. In
PBG@ SIGGRAPH, pages 59–65, 2006. 2

[29] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang
Zeng. Dreamgaussian: Generative gaussian splatting for effi-

https://github.com/graphdeco-inria/gaussian-splatting
https://github.com/graphdeco-inria/gaussian-splatting

cient 3d content creation. arXiv preprint arXiv:2309.16653,
2023. 2

[30] vkgs. VulKan Gaussian Splatting. https://github.
com/jaesung-cs/vkgs, 2024. 1, 2, 3, 4, 6

[31] Tim Weyrich, Simon Heinzle, Timo Aila, Daniel B Fasnacht,
Stephan Oetiker, Mario Botsch, Cyril Flaig, Simon Mall,
Kaspar Rohrer, Norbert Felber, et al. A hardware architec-
ture for surface splatting. ACM Transactions on Graphics
(TOG), 26(3):90–es, 2007. 2

[32] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene rendering.
arXiv preprint arXiv:2310.08528, 2023. 2

[33] Tianyi Xie, Zeshun Zong, Yuxin Qiu, Xuan Li, Yutao Feng,
Yin Yang, and Chenfanfu Jiang. Physgaussian: Physics-
integrated 3d gaussians for generative dynamics. arXiv
preprint arXiv:2311.12198, 2023. 2

[34] Chi Yan, Delin Qu, Dong Wang, Dan Xu, Zhigang Wang,
Bin Zhao, and Xuelong Li. Gs-slam: Dense visual slam
with 3d gaussian splatting. arXiv preprint arXiv:2311.11700,
2023. 2

[35] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li
Zhang. Real-time photorealistic dynamic scene representa-
tion and rendering with 4d gaussian splatting. arXiv preprint
arXiv:2310.10642, 2023. 2

[36] Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke.
Gaussian grouping: Segment and edit anything in 3d scenes.
arXiv preprint arXiv:2312.00732, 2023. 2

[37] Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng
Zhang, Wenyu Liu, Qi Tian, and Xinggang Wang. Gaussian-
dreamer: Fast generation from text to 3d gaussian splatting
with point cloud priors. arXiv preprint arXiv:2310.08529,
2023. 2

[38] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. Mip-splatting: Alias-free 3d gaussian splat-
ting. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 19447–19456,
2024. 6

[39] Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian
opacity fields: Efficient and compact surface reconstruc-
tion in unbounded scenes. arXiv preprint arXiv:2404.10772,
2024. 1, 2, 7

[40] Vladimir Yugay, Yue Li, Theo Gevers, and Martin R Os-
wald. Gaussian-slam: Photo-realistic dense slam with gaus-
sian splatting. arXiv preprint arXiv:2312.10070, 2023. 2

[41] Wojciech Zielonka, Timur Bagautdinov, Shunsuke Saito,
Michael Zollhöfer, Justus Thies, and Javier Romero. Driv-
able 3d gaussian avatars. arXiv preprint arXiv:2311.08581,
2023. 2

https://github.com/jaesung-cs/vkgs
https://github.com/jaesung-cs/vkgs

	Introduction
	Related Works
	Preliminaries: Gaussian Splatting
	Gaussian Splatting
	Ray-Based Gaussian Splatting
	Hardware-Rasterized GS

	Hardware-Rasterized RayGS
	Vertex shader
	Fragment shader

	MIP for RayGS
	Experiments
	Evaluation Protocol
	Results

	Conclusions

