Source code for flow_matching.loss.generalized_loss

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.

import torch
from torch import Tensor
from torch.nn.modules.loss import _Loss

from flow_matching.path import MixtureDiscreteProbPath


[docs] class MixturePathGeneralizedKL(_Loss): r"""A generalized KL loss for discrete flow matching. A class that measures the generalized KL of a discrete flow model :math:`p_{1|t}` w.r.t. a probability path given by ``path``. Note: this class is assuming that the model is trained on the same path. For a model trained on a space :math:`\mathcal{S} = \mathcal{T}^d`, :math:`\mathcal{T} = [K] = \set{1,2,\ldots,K}`, the loss is given by .. math:: \ell_i(x_1, x_t, t) = -\frac{\dot{\kappa}_t}{1-\kappa_t} \biggr[ p_{1|t}(x_t^i|x_t) -\delta_{x^i_1}(x_t^i) + (1-\delta_{x^i_1}(x_t^i))\left(\log p_{1|t}(x_1^i|x_t)\right)\biggr], where :math:`\kappa_t` is the scheduler associated with ``path``. Args: path (MixtureDiscreteProbPath): Probability path (x-prediction training). reduction (str, optional): Specify the reduction to apply to the output ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction is applied to the output, ``'mean'``: the output is reduced by mean over sequence elements, ``'sum'``: the output is reduced by sum over sequence elements. Defaults to 'mean'. """ def __init__(self, path: MixtureDiscreteProbPath, reduction: str = "mean") -> None: super().__init__(None, None, reduction) self.path = path
[docs] def forward(self, logits: Tensor, x_1: Tensor, x_t: Tensor, t: Tensor) -> Tensor: r"""Evaluates the generalized KL loss. Args: logits (Tensor): posterior model output (i.e., softmax(``logits``) :math:`=p_{1|t}(x|x_t)`), shape (batch, d, K). x_1 (Tensor): target data point :math:`x_1 \sim q`, shape (batch, d). x_t (Tensor): conditional sample at :math:`x_t \sim p_t(\cdot|x_1)`, shape (batch, d). t (Tensor): times in :math:`[0,1]`, shape (batch). Raises: ValueError: reduction value must be one of ``'none'`` | ``'mean'`` | ``'sum'``. Returns: Tensor: Generalized KL loss. """ x_1_shape = x_1.shape # extract x_1 value of log(p_{1|t}(x|x_t)). log_p_1t = torch.log_softmax(logits, dim=-1) log_p_1t_x1 = torch.gather(log_p_1t, dim=-1, index=x_1.unsqueeze(-1)) log_p_1t_x1 = log_p_1t_x1.view(*x_1_shape) # extract x_t value of p_{1|t}(x|x_t). p_1t = torch.exp(log_p_1t) p_1t_xt = torch.gather(p_1t, dim=-1, index=x_t.unsqueeze(-1)) p_1t_xt = p_1t_xt.view(*x_1_shape) scheduler_output = self.path.scheduler(t) jump_coefficient = ( scheduler_output.d_alpha_t / (1 - scheduler_output.alpha_t) )[(...,) + (None,) * (x_1.dim() - 1)] jump_coefficient = jump_coefficient.repeat(1, *x_1_shape[1:]) delta_x1_xt = (x_t == x_1).to(log_p_1t.dtype) loss = -jump_coefficient * ( p_1t_xt - delta_x1_xt + (1 - delta_x1_xt) * log_p_1t_x1 ) if self.reduction == "mean": return torch.mean(loss) elif self.reduction == "sum": return torch.sum(loss) elif self.reduction == "none": return loss else: raise ValueError(f"{self.reduction} is not a valid value for reduction")