Module audiocraft.models.unet

Pytorch Unet Module used for diffusion.

Expand source code
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
Pytorch Unet Module used for diffusion.
"""

from dataclasses import dataclass
import typing as tp

import torch
from torch import nn
from torch.nn import functional as F
from audiocraft.modules.transformer import StreamingTransformer, create_sin_embedding


@dataclass
class Output:
    sample: torch.Tensor


def get_model(cfg, channels: int, side: int, num_steps: int):
    if cfg.model == 'unet':
        return DiffusionUnet(
            chin=channels, num_steps=num_steps, **cfg.diffusion_unet)
    else:
        raise RuntimeError('Not Implemented')


class ResBlock(nn.Module):
    def __init__(self, channels: int, kernel: int = 3, norm_groups: int = 4,
                 dilation: int = 1, activation: tp.Type[nn.Module] = nn.ReLU,
                 dropout: float = 0.):
        super().__init__()
        stride = 1
        padding = dilation * (kernel - stride) // 2
        Conv = nn.Conv1d
        Drop = nn.Dropout1d
        self.norm1 = nn.GroupNorm(norm_groups, channels)
        self.conv1 = Conv(channels, channels, kernel, 1, padding, dilation=dilation)
        self.activation1 = activation()
        self.dropout1 = Drop(dropout)

        self.norm2 = nn.GroupNorm(norm_groups, channels)
        self.conv2 = Conv(channels, channels, kernel, 1, padding, dilation=dilation)
        self.activation2 = activation()
        self.dropout2 = Drop(dropout)

    def forward(self, x):
        h = self.dropout1(self.conv1(self.activation1(self.norm1(x))))
        h = self.dropout2(self.conv2(self.activation2(self.norm2(h))))
        return x + h


class DecoderLayer(nn.Module):
    def __init__(self, chin: int, chout: int, kernel: int = 4, stride: int = 2,
                 norm_groups: int = 4, res_blocks: int = 1, activation: tp.Type[nn.Module] = nn.ReLU,
                 dropout: float = 0.):
        super().__init__()
        padding = (kernel - stride) // 2
        self.res_blocks = nn.Sequential(
            *[ResBlock(chin, norm_groups=norm_groups, dilation=2**idx, dropout=dropout)
              for idx in range(res_blocks)])
        self.norm = nn.GroupNorm(norm_groups, chin)
        ConvTr = nn.ConvTranspose1d
        self.convtr = ConvTr(chin, chout, kernel, stride, padding, bias=False)
        self.activation = activation()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.res_blocks(x)
        x = self.norm(x)
        x = self.activation(x)
        x = self.convtr(x)
        return x


class EncoderLayer(nn.Module):
    def __init__(self, chin: int, chout: int, kernel: int = 4, stride: int = 2,
                 norm_groups: int = 4, res_blocks: int = 1, activation: tp.Type[nn.Module] = nn.ReLU,
                 dropout: float = 0.):
        super().__init__()
        padding = (kernel - stride) // 2
        Conv = nn.Conv1d
        self.conv = Conv(chin, chout, kernel, stride, padding, bias=False)
        self.norm = nn.GroupNorm(norm_groups, chout)
        self.activation = activation()
        self.res_blocks = nn.Sequential(
            *[ResBlock(chout, norm_groups=norm_groups, dilation=2**idx, dropout=dropout)
              for idx in range(res_blocks)])

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, C, T = x.shape
        stride, = self.conv.stride
        pad = (stride - (T % stride)) % stride
        x = F.pad(x, (0, pad))

        x = self.conv(x)
        x = self.norm(x)
        x = self.activation(x)
        x = self.res_blocks(x)
        return x


class BLSTM(nn.Module):
    """BiLSTM with same hidden units as input dim.
    """
    def __init__(self, dim, layers=2):
        super().__init__()
        self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
        self.linear = nn.Linear(2 * dim, dim)

    def forward(self, x):
        x = x.permute(2, 0, 1)
        x = self.lstm(x)[0]
        x = self.linear(x)
        x = x.permute(1, 2, 0)
        return x


class DiffusionUnet(nn.Module):
    def __init__(self, chin: int = 3, hidden: int = 24, depth: int = 3, growth: float = 2.,
                 max_channels: int = 10_000, num_steps: int = 1000, emb_all_layers=False, cross_attention: bool = False,
                 bilstm: bool = False, transformer: bool = False,
                 codec_dim: tp.Optional[int] = None, **kwargs):
        super().__init__()
        self.encoders = nn.ModuleList()
        self.decoders = nn.ModuleList()
        self.embeddings: tp.Optional[nn.ModuleList] = None
        self.embedding = nn.Embedding(num_steps, hidden)
        if emb_all_layers:
            self.embeddings = nn.ModuleList()
        self.condition_embedding: tp.Optional[nn.Module] = None
        for d in range(depth):
            encoder = EncoderLayer(chin, hidden, **kwargs)
            decoder = DecoderLayer(hidden, chin, **kwargs)
            self.encoders.append(encoder)
            self.decoders.insert(0, decoder)
            if emb_all_layers and d > 0:
                assert self.embeddings is not None
                self.embeddings.append(nn.Embedding(num_steps, hidden))
            chin = hidden
            hidden = min(int(chin * growth), max_channels)
        self.bilstm: tp.Optional[nn.Module]
        if bilstm:
            self.bilstm = BLSTM(chin)
        else:
            self.bilstm = None
        self.use_transformer = transformer
        self.cross_attention = False
        if transformer:
            self.cross_attention = cross_attention
            self.transformer = StreamingTransformer(chin, 8, 6, bias_ff=False, bias_attn=False,
                                                    cross_attention=cross_attention)

        self.use_codec = False
        if codec_dim is not None:
            self.conv_codec = nn.Conv1d(codec_dim, chin, 1)
            self.use_codec = True

    def forward(self, x: torch.Tensor, step: tp.Union[int, torch.Tensor], condition: tp.Optional[torch.Tensor] = None):
        skips = []
        bs = x.size(0)
        z = x
        view_args = [1]
        if type(step) is torch.Tensor:
            step_tensor = step
        else:
            step_tensor = torch.tensor([step], device=x.device, dtype=torch.long).expand(bs)

        for idx, encoder in enumerate(self.encoders):
            z = encoder(z)
            if idx == 0:
                z = z + self.embedding(step_tensor).view(bs, -1, *view_args).expand_as(z)
            elif self.embeddings is not None:
                z = z + self.embeddings[idx - 1](step_tensor).view(bs, -1, *view_args).expand_as(z)

            skips.append(z)

        if self.use_codec:  # insert condition in the bottleneck
            assert condition is not None, "Model defined for conditionnal generation"
            condition_emb = self.conv_codec(condition)  # reshape to the bottleneck dim
            assert condition_emb.size(-1) <= 2 * z.size(-1), \
                f"You are downsampling the conditionning with factor >=2 : {condition_emb.size(-1)=} and {z.size(-1)=}"
            if not self.cross_attention:

                condition_emb = torch.nn.functional.interpolate(condition_emb, z.size(-1))
                assert z.size() == condition_emb.size()
                z += condition_emb
                cross_attention_src = None
            else:
                cross_attention_src = condition_emb.permute(0, 2, 1)  # B, T, C
                B, T, C = cross_attention_src.shape
                positions = torch.arange(T, device=x.device).view(1, -1, 1)
                pos_emb = create_sin_embedding(positions, C, max_period=10_000, dtype=cross_attention_src.dtype)
                cross_attention_src = cross_attention_src + pos_emb
        if self.use_transformer:
            z = self.transformer(z.permute(0, 2, 1), cross_attention_src=cross_attention_src).permute(0, 2, 1)
        else:
            if self.bilstm is None:
                z = torch.zeros_like(z)
            else:
                z = self.bilstm(z)

        for decoder in self.decoders:
            s = skips.pop(-1)
            z = z[:, :, :s.shape[2]]
            z = z + s
            z = decoder(z)

        z = z[:, :, :x.shape[2]]
        return Output(z)

Functions

def get_model(cfg, channels: int, side: int, num_steps: int)
Expand source code
def get_model(cfg, channels: int, side: int, num_steps: int):
    if cfg.model == 'unet':
        return DiffusionUnet(
            chin=channels, num_steps=num_steps, **cfg.diffusion_unet)
    else:
        raise RuntimeError('Not Implemented')

Classes

class BLSTM (dim, layers=2)

BiLSTM with same hidden units as input dim.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class BLSTM(nn.Module):
    """BiLSTM with same hidden units as input dim.
    """
    def __init__(self, dim, layers=2):
        super().__init__()
        self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
        self.linear = nn.Linear(2 * dim, dim)

    def forward(self, x):
        x = x.permute(2, 0, 1)
        x = self.lstm(x)[0]
        x = self.linear(x)
        x = x.permute(1, 2, 0)
        return x

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x):
    x = x.permute(2, 0, 1)
    x = self.lstm(x)[0]
    x = self.linear(x)
    x = x.permute(1, 2, 0)
    return x
class DecoderLayer (chin: int, chout: int, kernel: int = 4, stride: int = 2, norm_groups: int = 4, res_blocks: int = 1, activation: Type[torch.nn.modules.module.Module] = torch.nn.modules.activation.ReLU, dropout: float = 0.0)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class DecoderLayer(nn.Module):
    def __init__(self, chin: int, chout: int, kernel: int = 4, stride: int = 2,
                 norm_groups: int = 4, res_blocks: int = 1, activation: tp.Type[nn.Module] = nn.ReLU,
                 dropout: float = 0.):
        super().__init__()
        padding = (kernel - stride) // 2
        self.res_blocks = nn.Sequential(
            *[ResBlock(chin, norm_groups=norm_groups, dilation=2**idx, dropout=dropout)
              for idx in range(res_blocks)])
        self.norm = nn.GroupNorm(norm_groups, chin)
        ConvTr = nn.ConvTranspose1d
        self.convtr = ConvTr(chin, chout, kernel, stride, padding, bias=False)
        self.activation = activation()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.res_blocks(x)
        x = self.norm(x)
        x = self.activation(x)
        x = self.convtr(x)
        return x

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x: torch.Tensor) ‑> torch.Tensor

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x: torch.Tensor) -> torch.Tensor:
    x = self.res_blocks(x)
    x = self.norm(x)
    x = self.activation(x)
    x = self.convtr(x)
    return x
class DiffusionUnet (chin: int = 3, hidden: int = 24, depth: int = 3, growth: float = 2.0, max_channels: int = 10000, num_steps: int = 1000, emb_all_layers=False, cross_attention: bool = False, bilstm: bool = False, transformer: bool = False, codec_dim: Optional[int] = None, **kwargs)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class DiffusionUnet(nn.Module):
    def __init__(self, chin: int = 3, hidden: int = 24, depth: int = 3, growth: float = 2.,
                 max_channels: int = 10_000, num_steps: int = 1000, emb_all_layers=False, cross_attention: bool = False,
                 bilstm: bool = False, transformer: bool = False,
                 codec_dim: tp.Optional[int] = None, **kwargs):
        super().__init__()
        self.encoders = nn.ModuleList()
        self.decoders = nn.ModuleList()
        self.embeddings: tp.Optional[nn.ModuleList] = None
        self.embedding = nn.Embedding(num_steps, hidden)
        if emb_all_layers:
            self.embeddings = nn.ModuleList()
        self.condition_embedding: tp.Optional[nn.Module] = None
        for d in range(depth):
            encoder = EncoderLayer(chin, hidden, **kwargs)
            decoder = DecoderLayer(hidden, chin, **kwargs)
            self.encoders.append(encoder)
            self.decoders.insert(0, decoder)
            if emb_all_layers and d > 0:
                assert self.embeddings is not None
                self.embeddings.append(nn.Embedding(num_steps, hidden))
            chin = hidden
            hidden = min(int(chin * growth), max_channels)
        self.bilstm: tp.Optional[nn.Module]
        if bilstm:
            self.bilstm = BLSTM(chin)
        else:
            self.bilstm = None
        self.use_transformer = transformer
        self.cross_attention = False
        if transformer:
            self.cross_attention = cross_attention
            self.transformer = StreamingTransformer(chin, 8, 6, bias_ff=False, bias_attn=False,
                                                    cross_attention=cross_attention)

        self.use_codec = False
        if codec_dim is not None:
            self.conv_codec = nn.Conv1d(codec_dim, chin, 1)
            self.use_codec = True

    def forward(self, x: torch.Tensor, step: tp.Union[int, torch.Tensor], condition: tp.Optional[torch.Tensor] = None):
        skips = []
        bs = x.size(0)
        z = x
        view_args = [1]
        if type(step) is torch.Tensor:
            step_tensor = step
        else:
            step_tensor = torch.tensor([step], device=x.device, dtype=torch.long).expand(bs)

        for idx, encoder in enumerate(self.encoders):
            z = encoder(z)
            if idx == 0:
                z = z + self.embedding(step_tensor).view(bs, -1, *view_args).expand_as(z)
            elif self.embeddings is not None:
                z = z + self.embeddings[idx - 1](step_tensor).view(bs, -1, *view_args).expand_as(z)

            skips.append(z)

        if self.use_codec:  # insert condition in the bottleneck
            assert condition is not None, "Model defined for conditionnal generation"
            condition_emb = self.conv_codec(condition)  # reshape to the bottleneck dim
            assert condition_emb.size(-1) <= 2 * z.size(-1), \
                f"You are downsampling the conditionning with factor >=2 : {condition_emb.size(-1)=} and {z.size(-1)=}"
            if not self.cross_attention:

                condition_emb = torch.nn.functional.interpolate(condition_emb, z.size(-1))
                assert z.size() == condition_emb.size()
                z += condition_emb
                cross_attention_src = None
            else:
                cross_attention_src = condition_emb.permute(0, 2, 1)  # B, T, C
                B, T, C = cross_attention_src.shape
                positions = torch.arange(T, device=x.device).view(1, -1, 1)
                pos_emb = create_sin_embedding(positions, C, max_period=10_000, dtype=cross_attention_src.dtype)
                cross_attention_src = cross_attention_src + pos_emb
        if self.use_transformer:
            z = self.transformer(z.permute(0, 2, 1), cross_attention_src=cross_attention_src).permute(0, 2, 1)
        else:
            if self.bilstm is None:
                z = torch.zeros_like(z)
            else:
                z = self.bilstm(z)

        for decoder in self.decoders:
            s = skips.pop(-1)
            z = z[:, :, :s.shape[2]]
            z = z + s
            z = decoder(z)

        z = z[:, :, :x.shape[2]]
        return Output(z)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x: torch.Tensor, step: Union[int, torch.Tensor], condition: Optional[torch.Tensor] = None) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x: torch.Tensor, step: tp.Union[int, torch.Tensor], condition: tp.Optional[torch.Tensor] = None):
    skips = []
    bs = x.size(0)
    z = x
    view_args = [1]
    if type(step) is torch.Tensor:
        step_tensor = step
    else:
        step_tensor = torch.tensor([step], device=x.device, dtype=torch.long).expand(bs)

    for idx, encoder in enumerate(self.encoders):
        z = encoder(z)
        if idx == 0:
            z = z + self.embedding(step_tensor).view(bs, -1, *view_args).expand_as(z)
        elif self.embeddings is not None:
            z = z + self.embeddings[idx - 1](step_tensor).view(bs, -1, *view_args).expand_as(z)

        skips.append(z)

    if self.use_codec:  # insert condition in the bottleneck
        assert condition is not None, "Model defined for conditionnal generation"
        condition_emb = self.conv_codec(condition)  # reshape to the bottleneck dim
        assert condition_emb.size(-1) <= 2 * z.size(-1), \
            f"You are downsampling the conditionning with factor >=2 : {condition_emb.size(-1)=} and {z.size(-1)=}"
        if not self.cross_attention:

            condition_emb = torch.nn.functional.interpolate(condition_emb, z.size(-1))
            assert z.size() == condition_emb.size()
            z += condition_emb
            cross_attention_src = None
        else:
            cross_attention_src = condition_emb.permute(0, 2, 1)  # B, T, C
            B, T, C = cross_attention_src.shape
            positions = torch.arange(T, device=x.device).view(1, -1, 1)
            pos_emb = create_sin_embedding(positions, C, max_period=10_000, dtype=cross_attention_src.dtype)
            cross_attention_src = cross_attention_src + pos_emb
    if self.use_transformer:
        z = self.transformer(z.permute(0, 2, 1), cross_attention_src=cross_attention_src).permute(0, 2, 1)
    else:
        if self.bilstm is None:
            z = torch.zeros_like(z)
        else:
            z = self.bilstm(z)

    for decoder in self.decoders:
        s = skips.pop(-1)
        z = z[:, :, :s.shape[2]]
        z = z + s
        z = decoder(z)

    z = z[:, :, :x.shape[2]]
    return Output(z)
class EncoderLayer (chin: int, chout: int, kernel: int = 4, stride: int = 2, norm_groups: int = 4, res_blocks: int = 1, activation: Type[torch.nn.modules.module.Module] = torch.nn.modules.activation.ReLU, dropout: float = 0.0)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class EncoderLayer(nn.Module):
    def __init__(self, chin: int, chout: int, kernel: int = 4, stride: int = 2,
                 norm_groups: int = 4, res_blocks: int = 1, activation: tp.Type[nn.Module] = nn.ReLU,
                 dropout: float = 0.):
        super().__init__()
        padding = (kernel - stride) // 2
        Conv = nn.Conv1d
        self.conv = Conv(chin, chout, kernel, stride, padding, bias=False)
        self.norm = nn.GroupNorm(norm_groups, chout)
        self.activation = activation()
        self.res_blocks = nn.Sequential(
            *[ResBlock(chout, norm_groups=norm_groups, dilation=2**idx, dropout=dropout)
              for idx in range(res_blocks)])

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, C, T = x.shape
        stride, = self.conv.stride
        pad = (stride - (T % stride)) % stride
        x = F.pad(x, (0, pad))

        x = self.conv(x)
        x = self.norm(x)
        x = self.activation(x)
        x = self.res_blocks(x)
        return x

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x: torch.Tensor) ‑> torch.Tensor

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x: torch.Tensor) -> torch.Tensor:
    B, C, T = x.shape
    stride, = self.conv.stride
    pad = (stride - (T % stride)) % stride
    x = F.pad(x, (0, pad))

    x = self.conv(x)
    x = self.norm(x)
    x = self.activation(x)
    x = self.res_blocks(x)
    return x
class Output (sample: torch.Tensor)

Output(sample: torch.Tensor)

Expand source code
@dataclass
class Output:
    sample: torch.Tensor

Class variables

var sample : torch.Tensor
class ResBlock (channels: int, kernel: int = 3, norm_groups: int = 4, dilation: int = 1, activation: Type[torch.nn.modules.module.Module] = torch.nn.modules.activation.ReLU, dropout: float = 0.0)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ResBlock(nn.Module):
    def __init__(self, channels: int, kernel: int = 3, norm_groups: int = 4,
                 dilation: int = 1, activation: tp.Type[nn.Module] = nn.ReLU,
                 dropout: float = 0.):
        super().__init__()
        stride = 1
        padding = dilation * (kernel - stride) // 2
        Conv = nn.Conv1d
        Drop = nn.Dropout1d
        self.norm1 = nn.GroupNorm(norm_groups, channels)
        self.conv1 = Conv(channels, channels, kernel, 1, padding, dilation=dilation)
        self.activation1 = activation()
        self.dropout1 = Drop(dropout)

        self.norm2 = nn.GroupNorm(norm_groups, channels)
        self.conv2 = Conv(channels, channels, kernel, 1, padding, dilation=dilation)
        self.activation2 = activation()
        self.dropout2 = Drop(dropout)

    def forward(self, x):
        h = self.dropout1(self.conv1(self.activation1(self.norm1(x))))
        h = self.dropout2(self.conv2(self.activation2(self.norm2(h))))
        return x + h

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x):
    h = self.dropout1(self.conv1(self.activation1(self.norm1(x))))
    h = self.dropout2(self.conv2(self.activation2(self.norm2(h))))
    return x + h