Module audiocraft.models.unet
Pytorch Unet Module used for diffusion.
Functions
def get_model(cfg, channels: int, side: int, num_steps: int)
Classes
class BLSTM (dim, layers=2)
-
BiLSTM with same hidden units as input dim.
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class BLSTM(nn.Module): """BiLSTM with same hidden units as input dim. """ def __init__(self, dim, layers=2): super().__init__() self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim) self.linear = nn.Linear(2 * dim, dim) def forward(self, x): x = x.permute(2, 0, 1) x = self.lstm(x)[0] x = self.linear(x) x = x.permute(1, 2, 0) return x
Ancestors
- torch.nn.modules.module.Module
Class variables
var call_super_init : bool
var dump_patches : bool
var training : bool
Methods
def forward(self, x) ‑> Callable[..., Any]
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
class DecoderLayer (chin: int, chout: int, kernel: int = 4, stride: int = 2, norm_groups: int = 4, res_blocks: int = 1, activation: Type[torch.nn.modules.module.Module] = torch.nn.modules.activation.ReLU, dropout: float = 0.0)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class DecoderLayer(nn.Module): def __init__(self, chin: int, chout: int, kernel: int = 4, stride: int = 2, norm_groups: int = 4, res_blocks: int = 1, activation: tp.Type[nn.Module] = nn.ReLU, dropout: float = 0.): super().__init__() padding = (kernel - stride) // 2 self.res_blocks = nn.Sequential( *[ResBlock(chin, norm_groups=norm_groups, dilation=2**idx, dropout=dropout) for idx in range(res_blocks)]) self.norm = nn.GroupNorm(norm_groups, chin) ConvTr = nn.ConvTranspose1d self.convtr = ConvTr(chin, chout, kernel, stride, padding, bias=False) self.activation = activation() def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.res_blocks(x) x = self.norm(x) x = self.activation(x) x = self.convtr(x) return x
Ancestors
- torch.nn.modules.module.Module
Class variables
var call_super_init : bool
var dump_patches : bool
var training : bool
Methods
def forward(self, x: torch.Tensor) ‑> torch.Tensor
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
class DiffusionUnet (chin: int = 3, hidden: int = 24, depth: int = 3, growth: float = 2.0, max_channels: int = 10000, num_steps: int = 1000, emb_all_layers=False, cross_attention: bool = False, bilstm: bool = False, transformer: bool = False, codec_dim: Optional[int] = None, **kwargs)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class DiffusionUnet(nn.Module): def __init__(self, chin: int = 3, hidden: int = 24, depth: int = 3, growth: float = 2., max_channels: int = 10_000, num_steps: int = 1000, emb_all_layers=False, cross_attention: bool = False, bilstm: bool = False, transformer: bool = False, codec_dim: tp.Optional[int] = None, **kwargs): super().__init__() self.encoders = nn.ModuleList() self.decoders = nn.ModuleList() self.embeddings: tp.Optional[nn.ModuleList] = None self.embedding = nn.Embedding(num_steps, hidden) if emb_all_layers: self.embeddings = nn.ModuleList() self.condition_embedding: tp.Optional[nn.Module] = None for d in range(depth): encoder = EncoderLayer(chin, hidden, **kwargs) decoder = DecoderLayer(hidden, chin, **kwargs) self.encoders.append(encoder) self.decoders.insert(0, decoder) if emb_all_layers and d > 0: assert self.embeddings is not None self.embeddings.append(nn.Embedding(num_steps, hidden)) chin = hidden hidden = min(int(chin * growth), max_channels) self.bilstm: tp.Optional[nn.Module] if bilstm: self.bilstm = BLSTM(chin) else: self.bilstm = None self.use_transformer = transformer self.cross_attention = False if transformer: self.cross_attention = cross_attention self.transformer = StreamingTransformer(chin, 8, 6, bias_ff=False, bias_attn=False, cross_attention=cross_attention) self.use_codec = False if codec_dim is not None: self.conv_codec = nn.Conv1d(codec_dim, chin, 1) self.use_codec = True def forward(self, x: torch.Tensor, step: tp.Union[int, torch.Tensor], condition: tp.Optional[torch.Tensor] = None): skips = [] bs = x.size(0) z = x view_args = [1] if type(step) is torch.Tensor: step_tensor = step else: step_tensor = torch.tensor([step], device=x.device, dtype=torch.long).expand(bs) for idx, encoder in enumerate(self.encoders): z = encoder(z) if idx == 0: z = z + self.embedding(step_tensor).view(bs, -1, *view_args).expand_as(z) elif self.embeddings is not None: z = z + self.embeddings[idx - 1](step_tensor).view(bs, -1, *view_args).expand_as(z) skips.append(z) if self.use_codec: # insert condition in the bottleneck assert condition is not None, "Model defined for conditionnal generation" condition_emb = self.conv_codec(condition) # reshape to the bottleneck dim assert condition_emb.size(-1) <= 2 * z.size(-1), \ f"You are downsampling the conditionning with factor >=2 : {condition_emb.size(-1)=} and {z.size(-1)=}" if not self.cross_attention: condition_emb = torch.nn.functional.interpolate(condition_emb, z.size(-1)) assert z.size() == condition_emb.size() z += condition_emb cross_attention_src = None else: cross_attention_src = condition_emb.permute(0, 2, 1) # B, T, C B, T, C = cross_attention_src.shape positions = torch.arange(T, device=x.device).view(1, -1, 1) pos_emb = create_sin_embedding(positions, C, max_period=10_000, dtype=cross_attention_src.dtype) cross_attention_src = cross_attention_src + pos_emb if self.use_transformer: z = self.transformer(z.permute(0, 2, 1), cross_attention_src=cross_attention_src).permute(0, 2, 1) else: if self.bilstm is None: z = torch.zeros_like(z) else: z = self.bilstm(z) for decoder in self.decoders: s = skips.pop(-1) z = z[:, :, :s.shape[2]] z = z + s z = decoder(z) z = z[:, :, :x.shape[2]] return Output(z)
Ancestors
- torch.nn.modules.module.Module
Class variables
var call_super_init : bool
var dump_patches : bool
var training : bool
Methods
def forward(self, x: torch.Tensor, step: Union[int, torch.Tensor], condition: Optional[torch.Tensor] = None) ‑> Callable[..., Any]
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
class EncoderLayer (chin: int, chout: int, kernel: int = 4, stride: int = 2, norm_groups: int = 4, res_blocks: int = 1, activation: Type[torch.nn.modules.module.Module] = torch.nn.modules.activation.ReLU, dropout: float = 0.0)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class EncoderLayer(nn.Module): def __init__(self, chin: int, chout: int, kernel: int = 4, stride: int = 2, norm_groups: int = 4, res_blocks: int = 1, activation: tp.Type[nn.Module] = nn.ReLU, dropout: float = 0.): super().__init__() padding = (kernel - stride) // 2 Conv = nn.Conv1d self.conv = Conv(chin, chout, kernel, stride, padding, bias=False) self.norm = nn.GroupNorm(norm_groups, chout) self.activation = activation() self.res_blocks = nn.Sequential( *[ResBlock(chout, norm_groups=norm_groups, dilation=2**idx, dropout=dropout) for idx in range(res_blocks)]) def forward(self, x: torch.Tensor) -> torch.Tensor: B, C, T = x.shape stride, = self.conv.stride pad = (stride - (T % stride)) % stride x = F.pad(x, (0, pad)) x = self.conv(x) x = self.norm(x) x = self.activation(x) x = self.res_blocks(x) return x
Ancestors
- torch.nn.modules.module.Module
Class variables
var call_super_init : bool
var dump_patches : bool
var training : bool
Methods
def forward(self, x: torch.Tensor) ‑> torch.Tensor
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
class Output (sample: torch.Tensor)
-
Output(sample: torch.Tensor)
Expand source code
@dataclass class Output: sample: torch.Tensor
Class variables
var sample : torch.Tensor
class ResBlock (channels: int, kernel: int = 3, norm_groups: int = 4, dilation: int = 1, activation: Type[torch.nn.modules.module.Module] = torch.nn.modules.activation.ReLU, dropout: float = 0.0)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.Note
As per the example above, an
__init__()
call to the parent class must be made before assignment on the child.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class ResBlock(nn.Module): def __init__(self, channels: int, kernel: int = 3, norm_groups: int = 4, dilation: int = 1, activation: tp.Type[nn.Module] = nn.ReLU, dropout: float = 0.): super().__init__() stride = 1 padding = dilation * (kernel - stride) // 2 Conv = nn.Conv1d Drop = nn.Dropout1d self.norm1 = nn.GroupNorm(norm_groups, channels) self.conv1 = Conv(channels, channels, kernel, 1, padding, dilation=dilation) self.activation1 = activation() self.dropout1 = Drop(dropout) self.norm2 = nn.GroupNorm(norm_groups, channels) self.conv2 = Conv(channels, channels, kernel, 1, padding, dilation=dilation) self.activation2 = activation() self.dropout2 = Drop(dropout) def forward(self, x): h = self.dropout1(self.conv1(self.activation1(self.norm1(x)))) h = self.dropout2(self.conv2(self.activation2(self.norm2(h)))) return x + h
Ancestors
- torch.nn.modules.module.Module
Class variables
var call_super_init : bool
var dump_patches : bool
var training : bool
Methods
def forward(self, x) ‑> Callable[..., Any]
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.