3D Spatial Recognition without Spatially Labeled 3D

Jason Ren^{1, 2}, Ishan Misra¹,

Alex Schwing², Rohit Girdhar¹

¹ FAIR ² UIUC

Motivating example -- ScanNet

- Collecting 3D scans is easy: an iPad is all you need
- Labeling strong labels: ~22.3 min/scan

Related work

Weak

Strong

Weak label: class tags

- Collecting 3D scans is easy: an iPad is all you need
- Labeling strong labels: ~22.3 min/scan
- Labeling weak labels: ~15 sec/scan (~90× faster)

Point cloud

Strong labels

Weak labels

Goal: Spatial Recognition

Goal: localizing each object

The "what" problem: segmentation

Naïve solution: Multiple Instance Learning (MIL)

• Class Activation Maps (CAMs)

The "what" problem: segmentation

Self-training

[1] Zoph et al., Rethinking Pre-training and Self-training, 2020

FAIR [2] Wei et al., Object region mining with adversarial erasing: a simple classification to semantic segmentation approach, 2017

Cross-transformation consistency

Standard technique used in Semi-/Self-supervised learning

Local smoothness

Unsupervised Shape Detection:

Encourage segmentation to be consistent within shapes

Detected shapes

Spoiler alert: detected shapes will be re-used later!

Goal: Spatial Recognition

How to predict bbox without bbox?

- \checkmark No issues if we have proposals!
- Compute proposals using weak labels?
 - ✓ No issues!
 - ✓ Unsupervised is also fine!

Geometric Selective Search (GSS)

l: localizing each object

Recap: Selective Search

Tl; dr: grouping super-pixels using low-level cues (color, size, shape...)

GSS: Geometric Selective Search

	Input	Color	Size	Shape	Texture	Segmentation
SS	Super-pixel	\checkmark	\checkmark	\checkmark	\checkmark	
GSS	Shapes	\checkmark	\checkmark	\checkmark		\checkmark

Unsupervised cues

 \rightarrow Weakly-supervised cues

Tl; dr: grouping primitive shapes using geometric + semantic cues (size, seg...)

GSS: Geometric Selective Search

Detected shapes

GSS: visualization

Point cloud

Detected shapes

GSS output

Ground-truth

GSS: Geometric Selective Search

Goal: Spatial Recognition

The "where" problem: detection

<u>Rol</u> Multiple Instance Learning (MIL)

The "where" problem: detection

• Rol Self-training

• Cross-transformation consistency

Bridging "what" & "where": joint-training

- 1. Better representation learning
- 2. Forward consistency
 - seg \rightarrow proposal \rightarrow det
- 3. Backward consistency
 - seg ← det

Backward consistency

Idea: label propagation from "confident" box to the points within it

WyPR: Weakly-sup. Point Cloud Recognition

Goal: localizing each object

Input: point cloud

Experiments

- 1. Backbone
 - PointNet++
- 2. Dataset
 - ScanNet, S3DIS
- 3. Metrics
 - mIoU / AR / mAP

Baselines

- 1. Single-task baseline
 - MIL-seg
 - MIL-det
- 2. External Prior ("WyPR+prior")
 - Object shape (easily accessible from synthetic data)
 - Floor height
- 3. Prior work

Semantic segmentation (ScanNet)

Detection (ScanNet)

Average recall (AR) @ 1k ROIs 65 100 58.3 89.3 88.1 86.2 85 ■ Single-task Qin et al. [2] 50 70 WyPR GSS (unsup) 35 55 ■ WyPR+prior GSS 40 19.7 Supervised 18.3 Supervised 20 23.6 25 9.6 5 10

Detection (mAP)

Visualization

Visualization

GT detection

Pred detection

GT segmentation

Pred segmentation

Questions?

FACEBOOK