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Motivating example -- ScanNet

o Collecting 3D scans is easy: an iPad is all you need

o Labeling strong labels: ~22.3 min/scan

Point cloud Strong labels
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(* ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. Dai et al., CVPR 2017)
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Weak label: class tags

o Collecting 3D scans is easy: an iPad is all you need

o Labeling strong labels: ~22.3 min/scan

o Labeling weak labels: ~15 sec/scan (~¥90x faster)

floor, wall,
chair, table...

.
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oal: Spatial Recognition

floor, wall, chair, table

Input: point cloud Goal: localizing each object
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The “what” problem: segmentation

Naive solution: Multiple Instance Learning (MIL)
 Class Activation Maps (CAMs)
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The “what” problem: segmentation

Self-training

Multiple instance learning
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[1] Zoph et al., Rethinking Pre-training and Self-training, 2020

FAIR [2] Wei et al., Object region mining with adversarial erasing: a simple classification to semantic segmentation approach, 2017



Cross-transformation consistency

Standard technique used in Semi-/Self-supervised learning
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Local smoothness

Unsupervised Shape Detection:

* Encourage segmentation to be consistent within shapes
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Unsupervised ~
s i g
shape detection* ‘# &
G
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@ @ Spoiler alert: detected shapes will be re-used later!

* Region growing algorithm: https://cgal.geometryfactory.com/CGAL/doc/master/Shape_detection/index.html 9



https://cgal.geometryfactory.com/CGAL/doc/master/Shape_detection/index.html

Goal: Spatial Recognition

How to predict bbox without bbox?

v'No issues if we have proposals!

Compute proposals using weak labels?
v'No issues!

v"Unsupervised is also fine!

Geometric Selective Search (GSS)

Input: point clouu
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uudl: localizing each object
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Recap: Selective Search

Input Image

Tl; dr: grouping super-pixels using low-level cues (color, size, shape...)
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GSS: Geometric Selective Search

Input Color Size Shape Texture Segmentation
SS Super-pixel v v v v
GSS Shapes v v v v
Unsupervised cues - Weakly-supervised cues

Tl; dr: grouping primitive shapes using geometric + semantic cues (size, seg...)
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GSS: Geometric Selective Search

Point cloud
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GSS: visualization

Point cloud Detected shapes GSS output Ground-truth
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GSS: Geometric Selective Search

Point cloud Detected shapes GSS output Ground-truth
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Goal: Spatial Recognition

Input: point cloud
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Goal: localizing each object
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The “where” problem: detection
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The “where” problem: detection

* Rol Self-training
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* Cross-transformation consistency



Bridging “what” & “where”

1. Better representation learning

2. Forward consistency

 seg —> proposal = det

3. Backward consistency
 seg < det
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joint-training
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Backward consistency

ldea: label propagation from “confident” box to the points within it

semantic consistency

FAIR
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WYyPR: Weakly-sup. Point Cloud Recognition

floor, wall, chair, table

(o}

Input: point cloud Goal: localizing each object

FAIR
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Experiments

1. Backbone

* PointNet++

2. Dataset
* ScanNet, S3DIS

3. Metrics
* mloU /AR /mAP

FAIR
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Baselines

1. Single-task baseline
* MiL-seg
 MiL-det
2. External Prior (“WyPR+prior”)
* Object shape (easily accessible from synthetic data)

* Floor height

3. Prior work

FAIR
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Semantic segmentation (ScanNet)
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[1] Wei et al., Multi-Path Region Mining For Weakly Supervised 3D Semantic Segmentation on Point Clouds, 2020
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Detection (ScanNet)

Average recall (AR) @ 1k ROls
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[2] Qin et al., Weakly Supervised 3D Object Detection from Point Clouds, 2020
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Visualization
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Questions?
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