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Abstract

In this report, we describe an Anticipative Video Trans-
former (AVT) [11] based solution for the EPIC-Kitchens-
100 anticipation challenge. AVT leverages a vision trans-
former based backbone architecture followed by causal at-
tention based transformer decoder to model the sequential
nature of videos. For the challenge, we aggregate predic-
tions from multiple variants of AVT, applied to different in-
put modalities and backbone architectures, along with prior
work. Our final model obtains strong performance on the
challenge test set with 16.5% mean top-5 recall in predict-
ing future actions.

1. Introduction

Anticipating actions that a person might do in the future
is an important task in egocentric computer vision. It forms
the basis for various downstream applications on wearable
devices, from safety systems that warn the user before po-
tentially dangerous actions, to an assistive systems that help
a user to perform actions by suggesting next steps. Com-
pared to traditional action recognition, anticipation tends to
be significantly more challenging. It requires going beyond
classifying current spatiotemporal visual patterns into a sin-
gle action category—a task nicely suited to today’s well-
honed discriminative models—to instead predict the multi-
modal distribution of future activities. Moreover, while ac-
tion recognition can often side-step temporal reasoning by
leveraging instantaneous contextual cues [12], anticipation
inherently requires modeling the progression of past actions
to predict the future. For instance, the presence of a plate of
food with a fork may be sufficient to indicate the action of
eating, whereas anticipating that same action would require
recognizing and reasoning over the sequence of actions that
precede it, such as chopping, cooking, serving, efc. Indeed,
recent work [9, 19] finds that modeling long temporal con-
text is often important for anticipation, unlike action recog-
nition where frame-level modeling is often enough [15, 22].

To that end, there have been attempts to use sequential
modeling architectures for action anticipation. While recur-
rent models like LSTMs have been explored for anticipa-
tion [1, 9, 24], they are known to struggle with modeling
long-range temporal dependencies due to their sequential
(non-parallel) nature. Recent work mitigates this limitation
using attention-based aggregation over different amounts of
the context to produce short-term (‘recent’) and long-term
(‘spanning’) features [19]. However, it still reduces the
video to multiple aggregate representations and loses its se-
quential nature.

Hence, we introduce Anticipative Video Transformer
(AVT), an alternate video modeling architecture that re-
places “aggregation” based temporal modeling with a an-
ticipative architecture. Aiming to overcome the tradeoffs
described above, the proposed model naturally embraces
the sequential nature of videos, while minimizing the lim-
itations that arise with recurrent architectures. Similar to
recurrent models, AVT can be rolled out indefinitely to pre-
dict further into the future (i.e. generate future predictions),
yet it does so while processing the input in parallel with
long-range attention, which is often lost in recurrent archi-
tectures. Furthermore, while it is compatible with various
backbone architectures, we leverage the recently proposed
vision transformer based architectures [7] as the frame en-
coder, resulting in an end-to-end attention based architec-
ture.

2. Our Approach

We now describe AVT briefly as illustrated in Figure 1,
and refer the readers to the full paper [11] for details.

2.1. Backbone Network

Given a video clip with T frames, V' = {Xy,--- ,Xr}
the backbone network, B, extracts a feature representa-
tion for each frame, {z,---,zr} where z; = B(Xy).
While various video base architectures have been pro-
posed [4, 8,21, 22] and can be used with AVT as we demon-
strate later, in this work we propose an alternate architec-
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Figure 1: (Left) AVT architecture. We split the 7" input frames into non-overlapping patches that are linearly projected. We add a
learned [CLASS] token, along with spatial position embeddings, and the resulting features are passed through multiple layers of multi-head
attention, with shared weights across the transformers applied to all frames. We take the resulting features corresponding to the [CLASS]
token, append a temporal position encoding and pass it through the Causal Transformer Decoder that predicts the future feature at frame ¢,
after attending to all features from 1 - - - t. The resulting feature is trained to regress to the true future feature (L fcq:) and predict the action
at that time point if labeled (L.;s), and the last prediction is trained to predict the future action (Lnezt). (Right) Causal Transformer
Decoder. It follows the Transformer architecture with pre-norm [23], causal masking in attention, and a final LayerNorm [17].

ture for video understanding based purely on attention. This
backbone, which we refer to as AVT-b, adopts the recently
proposed Vision Transformer (ViT) [7] architecture, which
has shown impressive results for static image classification.
Specifically, we adopt the ViT-B/16 architecture.

AVT-b is an attractive backbone design because it makes
our architecture purely attentional. Nonetheless, in addi-
tion to AVT-b, AVT is compatible with other video back-
bones, including those based on 2D CNNs [20, 22], 3D
CNNs [4, 8, 21], or fixed feature representations based on
detected objects [2, 3] or visual attributes [16]. In § 3 we
provide experiments testing several such alternatives. For
the case of spatiotemporal backbones, which operate on
clips as opposed to frames, we extract features as z; =
B(Xi_r, - ,X;), where the model is trained on L-length
clips. This ensures the features at frame ¢ do not incorporate
any information from the future, which is not allowed in the
anticipation problem setting.

2.2. Head Network

Given the features extracted by the backbone, the head
network, referred to as AVT-h, is used to predict the future
features for each input frame using a Causal Transformer

Decoder, D:

21,~-~,2T:D(Z1,~-~,ZT). (1)
Here Z; is the predicted future feature corresponding to
frame feature z;, after attending to all features before and
including it. The predicted features are then decoded into
a distribution over the semantic action classes using a lin-
ear classifier 0, i.e. §; = 6(2Z;). The final prediction, ¥,
is used as the model’s output for the next-action anticipa-
tion task. Note that since the next action segment (7" + 1)
is 7, seconds from the last observed frame (7") as per the
problem setup, we typically sample frames at a stride of 7,
so that the model learns to predict future features/actions at
that frame rate. However, empirically we find the model is
robust to other frame rate values as well.

We implement D using a masked transformer decoder
inspired from popular approaches in generative language
modeling, such as GPT-2 [17]. We start by adding a tempo-
ral position encoding to the frame features implemented as
a learned embedding of the absolute frame position within
the clip. The embedded features are then passed through
multiple decoder layers, each consisting of masked multi-
head attention, LayerNorm (LN) and a multi-layer percep-
tron (MLP). The final output is then passed through another



LN, akin to GPT-2 [17], to obtain the future frame embed-
dings.

2.3. Training Details

The models are then trained with a combination of three
objectives that include next action anticipation, future fea-
ture prediction, and current action classification. We refer
the reader to the main paper [1 1] for details.

3. Experiments
3.1. Implementation Details

We preprocess the input video clips by randomly scal-
ing the height between 248 and 280px, and take a 224px
crops at training time. We sample 10 frames at 1FPS by
default. We adopt network architecture details from [7] for
the AVT-b backbone. Specifically, we use a 12-head, 12-
layer transformer encoder model that operates on 768D rep-
resentations. We initialize the weights from a model pre-
trained on ImageNet-1K (IN1k), ImageNet-21K (IN21k)
or ImageNet-1K finetuned from ImageNet-21K (IN21+1k),
and finetune end-to-end for the anticipation tasks. For AVT-
h, we use a 4-head, 6-layer model that operates on a 2048D
representation, initialized from scratch. We employ a linear
layer between the backbone and head to project the features
to match the feature dimensions used in the head. We train
AVT end-to-end with SGD+momentum using 10~% weight
decay and 10~* learning rate for 50 epochs by default, with
a 20 epoch warmup [13] and 30 epochs of cosine annealed
decay. In all experiments, we train the model to predict the
future actions, and verbs/nouns are inferred from the action
prediction by marginalizing over the other. At test time,
we employ 3-crop testing, where we compute three 224px
spatial crops from 248px input frames, and average the pre-
dictions over the corresponding three clips.

The default backbone for AVT is AVT-b, based on the
ViT-B/16 architecture. However, we also experiment with
only our head model operating on fixed features from 1) a
frame-level TSN [22] backbone pre-trained for action clas-
sification, or 2) a recent spatiotemporal convolutional ar-
chitecture irCSN-152 [21] pre-trained on a large weakly la-
beled video dataset [10], which has shown strong results
when finetuned for action recognition. We finetune that
model for action classification on the anticipation dataset
and extract features that are used by the head for anticipa-
tion. In these cases, we only train the AVT-h layers. We use
the validation set to optimize the hyperparameters for each
setting, and use that setup on the held out test sets.

3.2. Ablations

In Table 1, we experimentally compare AVT to prior
work and variants of itself with different backbones and
modalities on the validation set. We find AVT-h over fea-

# Head Backbone Init Context Verb Noun Action
1 RULSTM [5] TSN IN1k 2.8s 275 290 133
2 AVT-h TSN IN1k 10s  27.2 30.7 13.6
m 3 AVT-h irCSN152 1G65M 10s 255 281 128
8 4 AVT-h AVT-b IN1k 10s 282 293 134
5 AVT-h AVT-b IN21+1k  10s  28.7 323 144
6 AVT-h AVT-b IN21k 10s  30.2 31.7 149
7 AVT-h AVT-b IN21k 15s  30.1 33.8 15.7
= 8 RULSTM [5] Faster R-CNN INlk 28 179 233 78
© 9 AVT-h Faster R-CNN IN1k 10s 18.0 243 8.7
E 10 RULSTM [5] TSN IN1k 2.8 19.1 167 172
= 11 AVT-h TSN IN1k 10s 209 169 6.6

Table 1: EK100 (val) using individual modalities. AVT outper-
forms prior work using the exact same features, and further im-
proves with our AVT-b backbone. The 15s model (row 7) was
also trained for longer (70 epochs as opposed to 50 default). Per-
formance reported using overall class-mean recall@5.

Models fused Weights Action
2+9 1.5:0.5 14.8
6+9 2.5:0.5 15.9
1+6+9 1.0:1.0:0.5 16.9
1+2+3+6+9 1.0:1.0:1.0:1.0:0.5 18.2

1+243+6+7+9+11 1.0:1.0:1.0:0.5:1.5:0.5:0.5 19.2

Table 2: EK100 (val) late fusing predictions from different ar-
chitectures. The numbers refer to the model in the corresponding
row in Table 1. Performance reported using overall class-mean
recall@5 for action prediction.

Overall Unseen Kitchen Tail Classes
Split Method Verb Noun Act Verb Noun Act Verb Noun Act
chance 64 20 02 144 29 05 1.6 02 0.1
= RULSTM [5] 27.8 30.8 14.0 28.8 27.2 14.2 19.8 220 11.1
®  AVT+(TSN) 255 31.8 14.8 255 23.6 11.5 185 258 12.6
AVT+ 28.2 320 159 295 239 119 21.1 258 14.1
. chance 62 23 01 81 33 03 19 07 00
é RULSTM [5] 253 267 11.2 194 269 9.7 17.6 160 7.9
TBN [26] 21.5 268 11.0 20.8 283 122 132 154 72
AVT+ 25.6 28.8 12.6 209 223 88 19.0 22.0 10.1
» HEMRG 253 267 112 194 269 9.7 176 160 79
2 NUS.CVML [18] 21.8 30.6 12.6 17.9 27.0 10.5 13.6 20.6 8.9
% ICL+SITU [14]  36.2 322 134 27.6 242 10.1 32.1 299 11.9
¢5  Panasonic [25] 304 335 14.8 21.1 27.1 102 24.6 275 127

AVT++ 26.7 323 16.7 21.0 27.6 129 193 240 138

Table 3: EK100 val and test sets using all modalities. We split
the test comparisons between published work and CVPR’21 chal-
lenge submissions. We outperform prior work including all chal-
lenge submissions, with especially significant gains on tail classes.
Performance is reported using class-mean recall@5. AVT+ and
AVT++ late fuse predictions from multiple modalities; please see
text for details.

tures from prior work [9] already outperforms prior work.
We are able to further improve results with the AVT-b back-
bone and training jointly, especially with the IN21k initial-



ization. Finally, by using additional frames of context and
training for longer, we obtained the best RGB-only perfor-
mance of 15.7%, showing AVT is effective in incorporating
long-term context.

Next, to further improve the performance, we aggre-
gate predictions across modalities and models by simple
weighted averaging of Lo normalized predictions, as shown
in Table 2. The model numbers refer to the model in the
corresponding row in Table 1. We find that combining mul-
tiple RGB models, based on fixed features and end-to-end
trained, as well as ones using other architectures [9], and
AVT-h applied on obj and flow features gave the best re-
sults on val set. We use a similar model on the test set as
described next.

3.3. Final Model

For the test submission, we first train our models on the
train+val set, and test those models as well as the models
trained only on train set, on the test set. Then, we late fuse
predictions using similar weights as the best combination
in Table 2, and for each case where we use both train+val
and train-only models, we use the same weight on predic-
tions from both. Specifically, we use both train+val and
train-only models for 2, 3, 6, 7 and 9; and train-only models
for 1 and 11. This model obtains 16.53% mean top-5 recall
for actions, as reported in our challenge submission on the
leaderboard. We show the full comparison to existing state-
of-the-art as well as challenge submissions in Table 3. Our
RGB+Obj (6 + 9) late fused model is referred to as AVT+,
and final late fused model is referred to as AVT++. It was
submitted to the challenge using CodalLab username ““shef”
with team name “AVT-FB-UT”.

In terms of the supervision scales [60], our pre-training
scale is 2 since we use publicly available models pre-trained
on public weakly supervised videos [10]. The full available
supervision in Epic Kitchens is used for training, leading to
supervision level of 4. The training data used is train + val
sets, leading to training data scale of 4.

4. Conclusion

We have presented the Anticipative Video Transformer
(AVT) architecture as used in the EPIC-Kitchens 2021 chal-
lenge. We propose a end-to-end Transformer based archi-
tecture for predictive video tasks such as anticipation, and
show that it improves over prior work. Our best model,
that aggregates predictions across modalities and models,
obtains strong performance of 16.5% mean top-5 recall in
predicting future actions on the test set.
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